首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对风力发电机变转速工况,采用集中质量参数法建立了变速风电行星齿轮传动系统的动力学模型,通过傅里叶级数将时变啮合刚度转化为啮合频率的函数形式,根据仿真的线性升速曲线,分析了变转速对齿轮副时变啮合刚度的影响,并利用龙格库塔法求得了传动系统中各齿轮的动态响应.在此基础上,对风电齿轮箱试验台升速过程测试信号进行分析,验证了所建变转速风电行星齿轮传动系统动力学模型的有效性.  相似文献   

2.
针对一级行星两级平行轴风电齿轮传动系统,综合考虑齿轮时变啮合刚度、啮合阻尼、传递误差等因素,建立31个自由度的弯扭轴耦合集中参数动力学模型,采用变步长Runge-Kutta法对系统动力学微分方程进行求解,得出齿轮传动系统各级传动误差;借助软件建立风电齿轮箱刚柔耦合动力学模型,并导入传动误差,采用模态叠加法求得齿轮箱轴承支反力,并将其作为声振耦合模型的边界条件,采用声学有限元法对风电齿轮箱进行振动噪声预估,并与试验结果对比分析,两者吻合良好。  相似文献   

3.
兆瓦级风力机齿轮传动系统动力学分析与优化   总被引:3,自引:1,他引:2       下载免费PDF全文
对1.5 MW风力发电机齿轮箱传动系统进行耦合振动分析,建立了风力机增速箱齿轮传动系统的扭转振动模型.利用4阶Runge-Kutta法计算了系统在风载、轮齿时变啮合刚度和系统阻尼共同作用下的动态响应,并利用谐波平衡法求出了系统的解析解,从而得到了优化设计目标函数的解析表达式.在此基础上,建立了以行星轮扭转振动加速度幅值最小和传动系统总质量最轻为目标的优化设计数学模型,利用MATLAB优化工具箱进行优化求解.实例计算表明,优化设计后传动系统的低阶固有频率明显提高,动态性能明显改善,重量减轻.  相似文献   

4.
风电增速齿轮箱动力学性能优化方法   总被引:2,自引:2,他引:0       下载免费PDF全文
建立增速齿轮箱动力学分析有限元模型,利用Lanczos法求得齿轮系统的振动模态;以齿轮副时变啮合刚度激励、齿面综合误差激励和轮齿啮合冲击激励为内部作用激励,采用直接积分法求得箱体表面节点的动态响应。选取箱体上12个主要结构参数作为动力学性能优化的设计变量,齿轮箱体积为状态变量,以齿轮箱表面振动加速度的均方根值最小为动力学性能优化的目标函数,利用零阶与一阶优化算法求得最优设计变量。结果表明:优化前后箱体均不产生共振,且满足静力学条件;优化后目标函数减小37.5%,箱体各计算点的振动响应均有较大幅度的减小,最大减小量为54%。  相似文献   

5.
以MW级风电机组传动链系统为研究对象,利用集中质量法对其纯扭转耦合非线性动力学模型的建立与动态响应规律进行探讨.在应用达朗贝尔原理建立传动链系统的质量-弹簧-阻尼模型和考虑部件间相互耦合影响的动力学方程组基础上,根据威布尔风速法建立西北酒泉地区的风速模型,并据此得到了一种作为传动链系统输入的随机时变转矩.在考虑增速箱中各齿轮副间的时变啮合刚度、啮合阻尼和时变误差激励影响的前提下,利用Matlab编写程序对建立的动力学方程组进行数值仿真计算,获得传动链系统的固有频率,以及各部件的扭转振动角位移、角速度、齿轮啮合力的响应情况.本研究对揭示随机风速作用下风力机组传动链系统的扭转振动响应规律,为传动链系统结构的动态性能优化设计提供了理论参考依据.  相似文献   

6.
风电齿轮箱传动系统的动力学建模   总被引:1,自引:0,他引:1  
由于风速的随机性特点,使得风电齿轮箱长期处于较为复杂的变载荷作用下而产生振动,这些振动将会引起齿轮箱内部结构的损坏.为了更好地对齿轮箱进行动力学分析,将风电齿轮箱传动系统分解为三级齿轮传动,采用集中质量法,在直齿轮、斜齿轮和行星齿轮动力学模型的基础上,建立了整个齿轮箱传动系统的动力学模型;并在考虑齿轮啮合刚度、啮合阻尼、啮合误差、偏心量、弯扭耦合、自身重力以及支撑轴承等因素的共同作用下,利用拉格朗日方程推导了整个传动系统的动力学方程.为今后分析兆瓦级风电齿轮箱传动系统的固有特性、动态响应等动力学特性奠定了一定的基础.  相似文献   

7.
以某3 MW风电齿轮箱为研究对象,通过导入壳体、齿圈、转架有限元凝聚刚度矩阵,建立基于MASTA的多柔体动力学模型,分析发现箱体在三级齿轮啮合频率附近有最高的动能分布,齿轮箱在高速级齿轮第一阶啮合频率激励下有最大的振动响应,且计算结果和试验测试结果基本符合。该结果可对风电齿轮箱设计阶段进行振动风险规避提供一定计算参考。  相似文献   

8.
船用齿轮箱多体动力学仿真及声振耦合分析   总被引:1,自引:0,他引:1  
基于多体系统动力学理论,综合考虑齿轮副时变啮合刚度、齿侧间隙、轴承支撑刚度等内部激励以及螺旋桨外部激励,建立了含传动系统及结构系统的船用齿轮装置多刚体系统动力学模型,计算了齿轮副动态啮合力及轴承支反力;对齿轮箱及支座进行柔性化处理,形成多柔体系统动力学模型,采用模态叠加法计算了箱体表面的动态响应.而后以多体动力学分析所得的轴承支反力频域历程为边界条件,建立了箱体声振强耦合分析模型,预估了齿轮箱表面声压及外声场辐射噪声.结果表明,齿轮副动态啮合力、轴承支反力以及箱体动态响应频域曲线的峰值均出现在齿轮副的啮合频率及其倍频处;仿真所得的箱体振动加速度及外声场辐射噪声与齿轮箱振动噪声试验台架实测结果吻合良好.  相似文献   

9.
大型船用齿轮箱传动系统的动态耦合特性   总被引:1,自引:0,他引:1  
考虑输入和输出端横向振动与系统扭转振动的耦合作用,建立大型船用齿轮箱三级齿轮传动系统横扭耦合动力学分析模型,利用基于能量的Lagrance法建立传动系统耦合动力学方程。采用Matlab软件计算了在时变啮合刚度和误差激励下的某大型船用齿轮传动系统固有特性和动态响应分析,得出系统动态良好,不存在共振现象,在工作负载下系统处于概周期振动的结论。  相似文献   

10.
作为传递动力与能量的关键部件,齿轮系统在石油石化装备中有着十分广泛的应用。针对常用的直齿与斜齿齿轮传动系统,分别利用能量法与累计积分能量法建立了直齿与斜齿圆柱齿轮齿的变截面悬臂梁模型,对比分析了直齿与斜齿圆柱齿轮系统时变啮合刚度的基本特性。利用集中参数法,分别建立直齿与斜齿圆柱齿轮齿的弯扭耦合振动模型。利用Nemark-β数值积分法对模型进行了仿真求解,对比分析了时变啮合刚度作用下直齿与斜齿圆柱齿轮系统的振动特性。结果表明:直齿圆柱齿轮时变啮合刚度存在阶跃性突变,而斜齿圆柱齿轮时变啮合刚度波动较为平稳。由于直齿圆柱齿轮时变啮合刚度的阶跃性突变,直齿圆柱齿轮的振动幅值与冲击响应要远远大于斜齿圆柱齿轮。本文阐明了直齿与斜齿圆柱齿轮在时变啮合刚度及振动响应上的异同点,从动力学分析的角度揭示了斜齿圆柱齿轮系统传动平稳的内在机理,可为齿轮传动系统的减震降噪及结构优化提供理论基础。  相似文献   

11.
齿轮箱动态响应及辐射噪声数值仿真   总被引:3,自引:1,他引:2       下载免费PDF全文
建立了齿轮箱传动系统及结构系统的动力有限元分析模型,综合考虑轮齿刚度激励、误差激励和啮合冲击激励等内部动态激励的影响,应用ANSYS软件对齿轮箱的固有模态和内部激励下的动态响应进行有限元数值仿真。以动态响应结果作为边界激励条件,建立了齿轮箱箱体的声学边界元分析模型,利用SYSNOISE软件中的直接边界元法求解箱体表面声压及场点辐射噪声,并对齿轮箱进行空气噪声测试。比较辐射噪声的测试结果与数值仿真结果,两者吻合良好。  相似文献   

12.
基于啮合特性的人字齿轮动力学建模与分析   总被引:1,自引:0,他引:1  
利用人字齿轮啮合特性的分析结果,准确计算人字齿轮轮齿时变啮合刚度激励和误差激励。根据齿轮啮合冲击模型,计算人字齿轮啮入冲击激励。根据人字齿轮的均载传动特性,综合考虑上述3种激励,利用集中参数理论建立人字齿轮12自由度弯曲—扭转—轴向变形耦合的三维空间动力学模型。应用牛顿第二定律,建立系统的振动方程,对方程进行消除刚体位移和量纲归一化处理。采用变步长四阶龙格库塔法(Runge-Kutta)求解,得到系统的振动响应和动态特性。结果表明:人字齿轮动力学模型的建立、求解和分析为其动态设计奠定了基础。  相似文献   

13.
通过模态分析与尾流激振响应分析,研究了离心压缩机闭式叶轮的动力特性与共振条件.针对尾流激振问题,基于气动计算建立激振力简化模型,提出了考虑激振力相位差的谐响应分析方法,计算出尾流激振产生的动应力水平与动力放大系数;基于IIW焊接疲劳标准计算了叶轮的结构热点应力.数值分析结果表明,在一定转速下,尾流激振产生的应力范围超过截止极限的50%,验证了三重点共振条件有效性的同时,指出了其局限性.  相似文献   

14.
The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics of vehicle power train. The method of simulating the random torsional excitation of tracked vehicle is explored at first. Secondly,the road random torsional excitations under different road roughness,vehicle speeds and pre-tensions are obtained. Thirdly,the dynamic analysis model of tracked vehicle power train is constructed with the consideration of the road random torsional excitation. Eventually,the influences of this excitation on output torque,bearing support force,vibration acceleration and dynamic shear stress of transmission shafts are intensively studied.The research conclusions are helpful to correct and refine the present virtual prototype of tracked vehicle power train.  相似文献   

15.
采用逆虚拟激励法进行车辆行驶随机动载的识别,使用确定性方法求解了车辆平稳行驶动载的识别问题.即已知车辆振动响应的自谱与互谱,在反求路面激励功率谱的基础上,求出车辆行驶动载.并通过计算机模拟识别动载.研究结果表明,根据前轮的响应模拟出的车辆随机动载能较好地反映车辆在不同速度,不同路面上的变化.逆虚拟激励法在求解车辆随机动...  相似文献   

16.
增速箱系统动态激励下的响应分析   总被引:3,自引:0,他引:3  
齿轮啮合动态激励是齿轮系统产生振动和噪声的基本原因,齿轮系统在内部动态激励下的响应分析,对齿轮系统的设计和使用具有重要的意义。针对增速箱系统,采用三维接触有限元法得出啮合齿对的时变刚度曲线,根据齿轮精度级确定的齿轮偏差模拟得出齿面误差曲线,得出了刚度激励和误差激励。应用Ⅰ-DEAS软件建立了增速箱有限元动力分析模型,分析计算出了增速箱的固有频率和箱体、传动轴的动态响应。结果表明,增速箱系统在使用中不会引起共振,且振幅不大,能满足系统的使用要求。  相似文献   

17.
本文分析了单闭环控制的同步发电机励磁系统的特点,指出了其存在的问题.以提高励磁系统动静态性能指标为原则,提出了基于励磁电流环的功率因数控制策略,并对其动静态性能进行了分析,理论分析及实际运行结果均验证了该方案的正确性.  相似文献   

18.
液压激波作用下管道流固耦合的动力学建模   总被引:3,自引:3,他引:0  
为了研究在主动液压激波作用下管道振动的动力学特性,设计了一种液压激波变频控制系统,建立了激波作用下充液管道流固耦合的动力学模型.采用特征线-有限元法,用Newmark法编程,将由特征线法求得的流体各断面横向压力载荷施加到管道有限元的单元节点上,由此求得了管道横向各断面处及轴向的振动时程曲线,并通过快速傅里叶变换获取了管道横向及轴向的幅频特性曲线.试验发现,在激波作用下,充液管道的横向与轴向振动中基频的幅频特性吻合较好,而高阶频率由于谐波干扰信号非常严重,因此与数值模拟结果没有明确的对应关系.  相似文献   

19.
以双侧双级双圆弧螺旋锥齿轮章动减速器为研究对象,综合考虑时变啮合刚度、啮合阻尼、传递误差、齿侧间隙等因素,采用集中参数法建立该类传动系统的12自由度弯-扭耦合非线性动力学模型.以四阶变步长Runge-Kutta法求解该系统的动态响应,并分析激励频率、支承刚度对系统动载荷系数的影响.结果表明,随着激励频率的变化,系统相继呈现出7倍周期、拟周期和混沌响应现象.无量纲激励频率为0.5和1.0时,动载荷系数出现峰值.在支承刚度的0.5~3.5倍范围内,随着支承刚度增大,系统动载荷系数降低.研究结果为后续的章动传动系统动态优化设计提供了理论依据.  相似文献   

20.
为了在汽车动力学中应用路面激励,基于滤波白噪声方法建立了路面激励的描述。分析了Simulink白噪声生成模块,基于滤波白噪声描述建立了路面激励Simulink模型,确定了空间下截止频率。基于路面激励Simulink模型,建立了汽车两自由度振动四分之一系统Simulink模型,在城市行驶的B级路面和车速范围对车身加速度、悬架动挠度、车轮动载荷和车轮加速度的车速特性进行了仿真。研究结果表明,基于滤波白噪声描述建立的路面激励Simulink模型和汽车两自由度振动四分之一系统的Simulink模型,既可以再现路面激励,也可以用于分析汽车振动响应量的车速特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号