首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
传统的基于支持度-置信度框架的关联规则挖掘方法可能会产生大量不相关的、甚至是误导的关联规则,同时也不能区分正负关联规则。本文提出了一种评价关联规则的可量化标准,进一步提出一种能同时挖掘正负关联规则的框架,实验证明该方法是有效的。  相似文献   

2.
交易数据库中的关联规则挖掘是一个很有价值的问题。现在已有不少关联规则模型,挖掘关联规则的算法也在不断改进。然而,在真正的数据库中,一些特殊的问题还没有被解决。一个主要的未解决的问题就是处理包含时态信息的数据。近几年来,为了解决这个问题,已经提出了基于某些方法的研究。  相似文献   

3.
关联规则挖掘研究综述   总被引:6,自引:0,他引:6  
介绍了关联规则挖掘的一般概念,并对一些典型算法进行了介绍,展望了关联规则挖掘的未来研究方向.  相似文献   

4.
定制优良的产品价格是激烈竞争的市场中一个关键,基于负关联规则挖掘的技术提出一种新的定价方法。它可通过人力参与和完全自动两种方式进行。该方法具有易操作与易扩展的优点.实验表明该方法是有效的.  相似文献   

5.
关联规则挖掘寻找给定数据集中项之间的有趣关系,是数据挖掘的主要研究方面.传统的关联规则挖掘算法仅能挖掘正关联规则,事实上,负关联规则也包含了非常有价值的信息,对于决策的作用也是不容忽视的.  相似文献   

6.
传统的正关联规则主要考虑事务中所列举的项目,负关联规则不仅要考虑事务中所包含的项目,还要考虑事务中所不包含的项目,它包含了非常有价值的信息。本文对负关联规则的相关定义、支持度及置信度的计算方法进行了分析讨论,并讨论了对负关联规则挖掘中出现的矛盾规则问题及利用规则相关性解决矛盾规则问题,最后给出了其挖掘算法及其实现。  相似文献   

7.
介绍了关联规则挖掘算法的基本原理,并按照挖掘中涉及到的变量数目(维数)、数据的抽象层次和处理变量的类别(布尔型和数值型),依次对关联规则挖掘算法的研究进行综述,并对一些典型的算法进行分析和比较,最后展望了关联规则挖掘算法的研究方向。  相似文献   

8.
关联规则是数据挖掘中一个重要的研究内容。典型的关联规则算法是由R.Agrawal等提出的Apriori算法。本文对Apriori算法进行了分析,指出了挖掘中的关键步骤,并给出了算法改进技术。  相似文献   

9.
徐伟伟 《科技信息》2007,(19):80-80,64
数据挖掘是近年来出现的一种综合机器学习、统计学、数据库等众多领域的新技术,而关联规则是数据挖掘的核心技术。本文通过对关联规则挖掘算法的分析,给出了优化思想,最后展望了关联规则挖掘的未来方向。  相似文献   

10.
一种改进的负关联规则挖掘算法   总被引:6,自引:0,他引:6  
负关联规则A→—B(或者-A→B,-A→B)描述的是项目之间的互斥关系,其与传统的关联规则有着同样重要的作用.然而,负关联规则和传统正关联规则的挖掘有很大不同,因为负关联规则隐藏在数量巨大的非频繁项集中.因此提出一种新的挖掘horn子句类型负关联规则的算法,并且实验证明是行之有效的.  相似文献   

11.
快速关联规则挖掘算法   总被引:1,自引:0,他引:1  
刘景春 《佳木斯大学学报》2004,22(2):151-156,177
提出了一种新颖的关联规则挖掘算法QAIS,与经典两阶段式关联规则挖掘算法不同的是,它只需扫描一遍事务数据库,不需要生成候选集,并且可以方便的应用在增量式关联规则挖掘算法中,该算法经合成数据验证是有效的.同时针对关联规则生成过程中出现大量冗余规则的问题,还讨论了冗余关联规则去除的问题.  相似文献   

12.
基于FP-tree频集模式的FP-Growth算法对关联规则挖掘的影响   总被引:9,自引:2,他引:7  
通过对两个有代表性的算法Apriori和FP-Growth的剖析, 说明频集模式挖掘的过程 , 比较有候选项集产生和无候选项集产生算法的特点, 并给出FP-tree结构的构造方法以 及对挖掘关联规则的影响, 提出了对算法的改进方法.  相似文献   

13.
间接关联是数据挖掘领域中一种数据项之间的关联关系,可有效地应用于市场营销及Web日志分析等领域.现有的间接关联挖掘算法采用Apriori算法框架,需挖掘出所有的频繁项目集,因而存在挖掘效率低的缺陷.为此,提出了一种基于前缀广义表的快速间接关联挖掘算法,该算法无须生成所有的频繁项目集且仅须扫描数据库2遍,可有效提高间接关联的挖掘效率.  相似文献   

14.
本文针对在事务数据库不变 ,最小支持度和最小可信度发生变化的情况下 ,如何进行关联规则的维护问题进行了研究 ,并提出了一种有效的增量式更新算法  相似文献   

15.
挖掘关联规则Apriori算法的一种改进   总被引:1,自引:0,他引:1  
本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。  相似文献   

16.
频繁项目集发现算法Apriori的研究   总被引:3,自引:0,他引:3  
为了提高Apriori算法的效率,从减少数据库扫描次数的角度出发,提出了一种动态自适应的改进算法.通过比较,该改进算法有效地减少了数据库的扫描次数,明显地提高了Apriori算法的效率,当数据库中总项目数目较大时,该算法更为有效.  相似文献   

17.
数据挖掘关联规则Apriori算法的优化   总被引:3,自引:0,他引:3  
关联规则挖掘研究是数据挖掘研究的一项重要的内容.Apriori算法是挖掘关联规则的经典算法,但存在一些不足之处.本文在Apriori算法基础上,提出了基于链表数据结构的关联规则改进算法.由于该算法只需对交易数据库进行一次检索,故能大量减少所需的I/O次数,提高了系统的性能.  相似文献   

18.
粒计算理论是一种看待客观世界的世界观和方法论.基于粒计算的多层次关联规则挖掘,引入了粒计算思想,采用多层次化二进制编码表示,只须一次数据集扫描便可获得所有叶节点粒,并能够由子粒的"或"、"与"运算获得父粒和多项集,简化求频繁-项集的求取方法,降低了算法的时间复杂度和空间复杂度提高了算法的效率.  相似文献   

19.
首先介绍了由Christian Hidber提出的在线挖掘关联规则算法Carma,然后提出了对该算法的若干改进.减弱了原算法第一步中当前交易的子集v被插入集合V的条件,同时改进了maxMissed的计算公式,使其计算更为简单.实验表明,以上改进提高了算法的速度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号