首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据IEC标准与GL准则定义极端风速模型对某1.5 MW的水平轴风力机进行数值模拟计算,研究极端风况下风轮转矩、空气动力系数等的变化规律.研究发现,风力机在非稳态工况下运行时,高风速时风轮的转矩与低风速时风轮的转矩变化规律相比有明显差异,叶根到叶尖产生不同程度的失速.在风速增大和减小的不同过程中,非稳态工况下风轮转矩、升力系数和阻力系数随攻角的变化有显著地差别,叶轮的升力系数和阻力系数的最大值均高于稳态下的系数.  相似文献   

2.
考虑法向力和切向力的叶尖损失,推导并给出了一种改进的风力机轴向和周向因子的计算模型。结合最新设计的高性能风力机专用翼型系列,利用泛函分析方法,研究了风力机叶片展向弦长及扭角分布的泛函表达方法,提出一种新的通用叶片形状的广义泛函方程;考虑实际风场风速的概率分布,空气密度及工业界对风力机叶片的气动与结构设计要求,分别以定速运行方式和变速运行方式下风力机叶轮年发电量输出最大化为目标,以叶片展向分布函数系数为设计变量,建立了2.3MW风力机叶片优化设计数学模型;优化得到2组性能优越的风力机叶片。新叶片的捕风效率和年发电量都远远高于传统风力机叶片,其中,所设计定速叶片最大功率系数达到0.515 7,变速叶片最大功率系数达到0.517 7。  相似文献   

3.
采用标准k-ε湍流模拟方法,在不考虑风力机与建筑连杆及风力机叶尖损失的影响下,采用滑移网格技术,对风力机与建筑一体化二维模型在不同风速下进行动态研究。结果表明:在不同风速下,建筑迎风面风力机的转矩系数最大值为0.41,最小值为0.10;背风面风力机的转矩系数最大值为0.27,最小值为0.17。  相似文献   

4.
一种低空急流对水平轴风力机气动性能的影响   总被引:1,自引:0,他引:1  
以一台1.5 MW变桨变速型三叶片风力机为研究对象,探讨了三种入流条件下水平轴风力机气动性能的异同,着重研究了一种典型低空急流对水平轴风力机气动性能的影响.结果表明:低空急流下风轮的功率和推力比均匀流和剪切流的大;低空急流下叶片表面压力总体大于其他两种流动,急流衰减内的翼型截面在吸力面中段存在一个比剪切更加显著的压力突降区;叶片各截面的法向力系数和切向力系数整体大于其他两种流动;低空急流下各截面的攻角比剪切流的大0.05%~36.66%,叶片表面的失速区尤其是叶根附近的失速区相对其他两种流动更大,分离线向前缘靠近,急流衰减内的翼型截面分离涡现象更加明显;对不同特征低空急流下水平轴风力机气动性能影响的研究将在未来的工作中进行.  相似文献   

5.
直叶片垂直轴风力机是旋转机械,转动惯量对其主要的气动性能有一定的影响.文中基于双向多流管理论并利用Matlab编程,以NACA0018翼型的H型垂直轴风力机为研究对象,分析转动惯量对H型垂直轴风力机性能的影响.分析结果表明:转动惯量的小范围变化对其最大输出功率系数影响不大,但较小转动惯量的风力机需要较大的风速才可以达到最大输出功率;在达到最大输出功率以前,转动惯量的小范围变化,较小转动惯量的风力机具有相对较大的功率系数、转矩系数和输出功率;随着风速的增大,转动惯量较小的风力机功率系数、转矩系数和转矩波动较大.  相似文献   

6.
桥梁阵风风速系数研究   总被引:1,自引:0,他引:1  
通过用短暂时距内的平均预期最大值代替瞬时预期最大值的方法来得到风速峰值和阵风风速系数,并讨论了地表粗糙度、基本风速、桥面高度和时距对阵风风速系数的影响程度,最后给出了阵风风速系数的数值.桥梁阵风风速系数研究@陈艾荣@黄鹏@项海帆  相似文献   

7.
桥梁阵风风速系数研究   总被引:5,自引:0,他引:5  
通过用短暂时距内的平均预期最大值代替瞬时预期最大值的方法来得到风速峰值和阵风风速系数,并讨论了地表粗糙度、基本风速、桥面高度和时距对阵风风速系数的影响程度,最后给出了阵风风速系数的数值.  相似文献   

8.
根据风力机的气动理论,并考虑风切变和风力机结构、几何参数的影响,建立了风力机叶片的气动载荷计算模型。以基本风速、渐变风速、阵风风速和脉动风速4种风速类型建立了变风速模型,并应用于叶片载荷计算模型,实现变风速下的叶片气动载荷的计算。以某MW级风力机为对象,给出了数值计算流程并进行了实例计算,结果显示:风力机叶片的气动载荷主要分布在叶片的中段和叶尖,且载荷大小随风速起伏变化,叶根的气动载荷随风速变化的趋势不明显,风速较大时,叶片上的载荷波动较为显著。结果可为叶片的结构设计和动力学分析提供参考。  相似文献   

9.
针对风力机在旋转过程中产生的叶尖涡影响风力机本身以及下游风力机气动性能的问题,提出了一种控制叶尖涡的策略,以减小叶尖涡对风力机本身及下游风力机气动性能的影响.以PhaseⅥ叶片的1/8模型为原始模型,在叶尖处和轮毂处同时开洞,用管道将洞连接的模型称作新模型.采用数值模拟的方法对来流风速从6 m/s到20 m/s的15个工况下原始模型和新模型风力机进行了对比分析,结果表明:在低风速下原始模型和新模型气动性能几乎一样,即新模型对叶片气动性能影响很小,尾流扩散速度也相近;但随着来流风速的增大新模型对风力机气动性能的影响也随之增大,新模型风轮功率比原始模型风轮功率有明显提高,尾流在风轮旋转平面内扩散速度变快,在来流方向传播距离变短.新模型尾流可以减小对下游风力机的影响,提升了风电场风能的利用效率.  相似文献   

10.
风力机叶片旋转方向影响风力机流场特性,并改变风力机之间的气动干扰,从而影响风力机功率特性。为掌握风力机叶片旋转方向对风力机功率特性的影响规律,基于CATIA软件建立NREL PhaseⅥ风力机模型,并基于三维计算流体力学(CFD)软件(Fluent)建立风力机气动特性分析模型。通过计算各风速下的风力机叶片表面压力分布和功率特性,并与美国国家能源部可再生能源实验室的NREL PhaseⅥ风洞实验数据对比,验证本文风力机分析模型准确性。随后,计算分析2台相同叶片旋转方向的NREL PhaseⅥ风力机功率特性随风力机间距的变化。分析表明,在不同风力机间距下,上游风力机输出功率基本保持不变,而下游风力机输出功率随风力机间距增大而增大;当两风力机间距为12倍直径时,下游风力机输出功率恢复至正常水平的92.1%。最后,计算分析2台相反叶片旋转方向的NREL PhaseⅥ风力机功率特性随风力机间距的变化。相比于相同的叶片旋转方向,叶片旋转反向将增加下游风力机输出功率,且功率增幅随着间距增大而逐渐减小;风力机间距为4倍直径时,功率增幅达到最大值,约为4.4%。  相似文献   

11.
为研究风向角对驶出隧道过程中高速列车气动效应的影响,以某型高速动车组列车为研究对象,采用数值模拟方法对隧道内气动压力、列车风风速、流场分布及列车气动荷载进行分析。通过与动模型试验结果进出对比,验证数值模拟方法的准确性。研究结果表明:隧道壁面气动压力峰值及变化幅值最大值出现在隧道内部,且出现位置到隧道出口距离与风向角有关;背风侧气动压力受风向角影响更大,气动压力变化幅值随风向角增大呈现先减小后增大再减小的趋势;出口处列车风风速随风向角增大基本呈现先增大后减小的趋势,30°风向角时列车风风速最大,但迎、背风侧列车风风速峰值出现时刻不同;随着风向角增大,流场分布不对称性增强,列车绕流特性由流线型绕流逐渐过渡到钝体绕流,流动分离点到头车鼻尖的距离呈现先增大后减小最后再增大的变化规律,隧道内流动结构愈加复杂;气动横向力、升力变化幅值随风向角增加呈现先增后减趋势,头车横向力系数最大变化幅值分别是中车、尾车的2.4倍和2.6倍,升力系数最大变化幅值分别是中车、尾车的1.1倍和1.5倍,故保证头车安全是控制整车运行安全的关键;侧风下高速列车驶出隧道情形下的最不利风向角为30°,此时头车发生列车事故风险...  相似文献   

12.
叶片偏航和干扰会显著改变大型风力机表面气动力分布模式,进而影响风力机体系的风振响应和稳定性能.以某5 MW大型风力机为研究对象,首先采用大涡模拟(LES)方法进行了最不利叶片位置下考虑6个偏航角(0°、5°、10°、20°、30°和45°)影响的风力机体系流场和气动力模拟,并与规范及国内外实测结果进行对比验证了大涡模拟的有效性.在此基础上,结合有限元方法系统分析了不同偏航角下风力机塔架-叶片耦合模型的动力特性、风振响应和稳定性能.结果表明:不同偏航角下塔架径向位移均值和均方差的最大值均出现在塔架环向0°和180°处,最大塔底弯矩均出现在环向20°处.0°偏航时各叶片顺风向位移响应极值均大于2.7 m,随着偏航角的增大,塔架顶部径向位移、叶片顺风向位移和叶片根部内力的均值及均方差均逐渐减小,而临界风速则呈现先减后增再减小的趋势.综合表明:0°偏航角下风力机体系气动性能和风振响应均最为不利,45°偏航角下风力机体系的稳定性能最为不利.  相似文献   

13.
三维弹性摩擦接触分析的边界元柔度矩阵法   总被引:1,自引:0,他引:1  
将边界元柔度矩阵法用于求解摩擦接触问题,论述了求解方法和收敛判定准则,并开发了计算程序·该方法集中了边界元法和柔度矩阵法的优越性,建模简便、求解精度高、迭代求解过程简捷、速度快·算例分析结果表明:摩擦系数对接触区大小及粘着、滑动区域分布和切向力的影响大于对法向力的影响;考虑摩擦影响时,法向力略大于忽略摩擦影响的法向力,接触区略小于忽略摩擦的接触区;摩擦系数增加时,接触区减小,粘着区相对扩大,滑动量减小,切向力和法向力增加  相似文献   

14.
风力机叶片气动噪声时域分析方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
风力机叶片气动噪声影响周边居民生活的问题开始引起研究人员的关注。现有研究大多基于CFD软件或实验数据拟合方法对其气动噪声进行分析,难以适应气动噪声随风速变化的动态分析需求。考虑风力机运行状态、来流风速以及接收点位置的影响,基于传统气动声学理论,建立了风力机叶片气动噪声计算的修正模型,并基于Matlab软件的Simulink模块,运用时域分析方法,对一种2 MW风力机叶片的气动噪声进行了编程计算,并绘制了风力机叶片气动噪声的声压时间序列图,为开发低噪声风力机叶片提供了理论依据。  相似文献   

15.
为了提高风力机组的整体性能,解决风力机在实际运行中受建筑物影响的问题,利用仿真分析软件Fluent对不同叶片数的新型鹦鹉螺等角螺线型风力机进行气动性能研究,建立建筑物与风力机组排布模型,分析建筑物扰流特性,对比扰流环境对风力机组转矩性能的影响。结果表明:3个叶片风力机的整体性能更优;建筑物下游出现紊流区域,切向速度明显增加,其附近的新型鹦鹉螺等角螺线型风力机组转矩性能明显提升,验证了建筑物附近安装鹦鹉螺等角螺线型风力机组的可行性。所提风力机组排布方式可有效提升风力机性能,为风力机结构优化设计和建筑物附近风力机排布提供参考。  相似文献   

16.
为提高垂直轴风力机的气动性能,提出在小型3叶片垂直轴风力机叶片尾缘加装开裂襟翼的设计方案。首先,根据CFD数值模拟和正交设计得到偏转角对风力机气动性能影响最大;然后,进一步分析了叶尖速比分别为1.5和2.5时襟翼偏转角对风力机气动性能的影响和增升机理;最后,提出了襟翼偏转角调节规律。研究结果表明:襟翼的较优参数组合为长度l=20%c、偏转角β=10°和布置位置t=90%c。当叶尖速比TSR分别为1.5和2.5时,较小的襟翼偏转角(0°β10°)能提升叶片平均切向力系数CTavg,其中,襟翼偏转角β=10°时,风力机的风能利用率CP分别提升了7.7%和4.6%;与原型风力机相比,应用襟翼偏转角调节规律后,风能利用率CP分别提升12.4%和10.4%。  相似文献   

17.
赵萌  刘振  刘印桢  刘美英 《科学技术与工程》2021,21(26):11040-11045
以300 W水平轴风力机叶片为研究对象,设计流线型凸包结构,并应用于风轮模型,结合滑移网格技术,对比研究光滑型与流线凸包型风力发电机的绕流场特性以及气动载荷特性,分析了三维绕流场内速度、压力、流线等的变化规律,以及不同风速下风力机的阻力系数及其功率的时程变化规律,探讨了流线凸包型与光滑型风轮在不同风速下运行时绕流特性的差异。结果表明:流线型凸包对流场有较好的改善结果;当风速增大时有明显的减阻效果,最大减阻率为19.53%,但其波动量增加为1.51%;凸包型风轮输出功率明显高于光滑型风轮,但随着风速增加,功率增加率也逐渐减弱。研究结果对水平轴风力机非定常气动特性研究及应用具有重要意义和价值。  相似文献   

18.
以美国国家可再生能源实验室(NREL) 5 MW机组为研究对象,采用大涡模拟结合致动线模型(LES-ALM)方法,分析下击暴流垂直风剪切条件下风力机尾流的速度特性、湍流特性及转矩特性.结果表明:相比于均匀来流和B类风场风剪切,下击暴流垂直风剪切条件下,风力机尾流轴向速度亏损最大,且尾流轴向恢复最慢,尾流非对称特性更明显;随着尾流向下游发展,三种来流工况下风力机尾流湍流强度的变化均为先增大后减小,且湍流强度最大值(在11D附近,D为风轮直径)均在10%~12%之间;在尾流湍流强度衰减过程中,下击暴流垂直风剪切条件下,风力机尾流湍流强度衰减更快;另外,与均匀来流和B类风场风剪切相比,下击暴流垂直风剪切条件下风力机低速轴转矩均值降低,但其标准差却明显增加,说明低速轴转矩波动幅度增加,进而引起风力机输出功率的波动增大,输出电能质量降低.  相似文献   

19.
通过对台风过程的风速及风向、阵风因子、湍流度和风速谱等参数的分析,研究了台风“启德”登陆时的近地风场特性.结果表明:台风“启德”的最大瞬时风速达到20 m/s,10 min最大平均风速为16m/s,台风登陆前,风速及风向脉动变化很大;台风登陆后,湍流度及阵风因子明显减小;风速变大,湍流度和阵风因子有减小的趋势.  相似文献   

20.
为降低风力机的气动噪声,提出一种用于小型风力机的双叉式叶尖结构改型设计方案,在风洞实验室开展了风力机外特性测试与气动噪声试验.试验结果表明:双叉式叶尖结构在3~9m/s的低风速段和中风速段能提高风力机的输出功率;双叉式叶尖结构可降低风力机风轮旋转基频所对应的最大声压级与叶尖涡脱落频率所对应的声压级.由此可知双叉式叶尖结构能有效降低风力机的气动噪声,其中叶尖夹角为90°的双叉式叶尖结构降噪性能最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号