首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为研究构造煤孔隙微观结构及其对瓦斯吸附的影响,采用压汞实验及PCT高压吸附实验,针对澄合矿区典型构造煤煤样进行孔隙结构分析及吸附特性测定,通过实验数据计算煤样孔隙体积及表面分形维数,分析构造煤微观孔隙结构对瓦斯吸附特性及吸附常数a、b值的影响。研究结果表明:煤样总孔容以大孔贡献为主,总比表面积微孔占比最高,各煤样间大、中、小及微孔占比基本相近,煤样坚固性系数与其总孔容成反比;吸附常数a与煤样微孔孔容、比表面积呈正相关关系,吸附常数b随着煤样大孔孔容占比、微孔占比的增大而增加;随着总比表面积增加,单位质量煤瓦斯吸附量逐渐增加,即微孔比表面积越大,瓦斯吸附能力越强;煤样孔隙体积及表面分形维数均可分为两部分,大、中孔隙分形维数在2~3之间,该段分形特征较为明显且孔隙结构复杂,孔隙体积分形维数与吸附常数a呈正相关关系。  相似文献   

2.
煤层孔隙结构对CO吸附量的影响   总被引:1,自引:0,他引:1  
针对开滦集团下属3个煤矿CO长期超标的现象,测定了CO在煤层中的吸附量和煤的孔隙结构,分析了不同孔径对煤层中CO吸附量的影响,讨论了煤的孔隙率、分形维数、比表面积与煤层中CO吸附量的关系.研究结果表明,低压条件下,煤层中CO气体的吸附量与微孔体积分数呈二次曲线关系,随着压力的升高CO的吸附量与微孔体积分数成正比关系;过渡孔体积分数的增加不利于煤层中CO的吸附;孔隙率、分形维数与CO的吸附量呈二次曲线关系;CO吸附量与煤样内比表面积呈正比.图5,表5,参11.  相似文献   

3.
为研究沁水盆地中高煤级煤的孔隙结构特征,采用低温液氮吸附实验测定了不同煤样比表面积及孔径分布数据,依据吸附-解吸曲线和分形维数对煤岩孔隙系统进行分类。结果表明:煤层微小孔较发育,具比表面积适中(0.418~0.902m2/g)、平均孔径小(14.6~21.0nm)、孔容小(0.00186~0.00453cm3/g)和低温氮吸量适中(1.5~3.0ml/g)等特征,镜质体反射率在1.51%~2.19%,利于煤层气赋存;基于低温液氮等温吸附曲线,识别出半封闭状态狭缝型孔和平行板状孔、开放状态的平行板状孔和墨水瓶型孔,其中开放孔比封闭孔吸附量要大,墨水瓶型孔最利于煤层气解吸开发;结合孔隙分形特征可知过渡孔与微小孔划分标准为60nm,煤级越高,孔隙表面形态越复杂,但对孔隙直径影响较小。  相似文献   

4.
针对煤层气储层温度低、凝胶体系破胶不彻底以及返排困难的难题,探讨了生物酶作为压裂液破胶剂对储层伤害程度。实验选用了生物酶破胶压裂液、过硫酸铵破胶压裂液和模拟煤层水对储层煤样进行伤害,处理后煤样分别进行扫描电镜、气体渗透率和原始煤样气体解吸实验。实验结果表明:生物酶能够对侵入裂隙中的压裂液有效破胶,不影响储层的裂隙发育结构,改善孔隙内气体导流能力,提高储层的气体渗透率;生物酶破胶体系能够显著降低对原始煤样中吸附气自然解吸的影响,气体解吸率达到了95. 65%;生物酶降解产生二氧化碳的速率与破胶程度正相关;低温对酶活性影响较小,60℃内温度升高降解速率增大。可见生物酶作为煤层气开发压裂液破胶剂效果明显。  相似文献   

5.
煤岩孔隙结构特征是评价煤层储集能力和选层压裂的重要参数。综合应用低温氮吸附方法、核磁共振技术和氩离子抛光成像等方法,利用分形理论定量表征孔隙的非均质性,并探讨分形维数的影响因素。结果表明,八连城矿区煤岩有机质孔主要为植物组织孔、粒间孔和气孔,矿物质孔为溶蚀孔和黏土矿物孔。I类曲线显示煤岩发育狭缝状孔和楔形孔。II类曲线表明煤岩瓶型孔发育。核磁共振双峰型T2谱表明吸附孔较为发育,连通性差。三峰型显示渗流孔和裂隙发育,孔渗条件好。孔隙直径在2~100 nm时,水分含量和比表面积与D1表现为正相关关系。D2与灰分含量、平均孔径呈正相关和负相关。孔隙直径在0.1~10.0 μm时,核磁共振法获得DN1与吸附孔表面积呈正相关,DN2与渗流孔的孔体积呈正相关;DM和溶蚀孔分形维数DC,分别受到黏土矿物和长石含量的控制。因此,氮吸附I型曲线煤层和三峰型核磁T2图谱煤层利于煤层气的开发。  相似文献   

6.
为了更好地了解页岩纳米孔隙特征及其对甲烷吸附性能的影响,对四川盆地上三叠统须五段的6个页岩样品进行了分形分析。通过对氮气吸附/解吸等温线的分析表明,页岩在相对压力为0~0.5和0.5~1时具有不同的吸附特征。利用Frenkel-Halsey-Hill(FHH)方程计算得到两个分形维数D_1和D_2。甲烷的吸附性能随着D_1和D_2的增加而增强,其中D_1对吸附有着更显著的影响。进一步研究表明,D_1代表由于页岩表面不规则性产生的孔隙表面分形特征;而D_2代表的是孔隙结构分形特征,其主要受页岩组分(有机碳含量、石英、黏土矿物等)和孔隙参数(平均孔径、微孔含量等)控制。更高的分形维数D_1对应更不规则的孔隙表面,为甲烷吸附提供更多的空间。而更高的分形维数D_2代表更复杂的孔隙结构以及孔隙表面更强烈的毛细凝聚作用,进而增强甲烷的吸附能力。因此,页岩孔隙表面越不规则,孔隙结构越复杂,甲烷吸附能力越强。  相似文献   

7.
川南地区龙马溪组页岩孔隙结构的分形特征   总被引:1,自引:0,他引:1  
分形维数是多孔介质不规则程度的度量。对川南下志留统龙马溪组页岩的氮气吸附法测量结果分析,采用基于FHH模型的分形维数计算模型,得到龙马溪组页岩孔隙的分形维数。川南龙马溪组页岩具有明显的分形特征及较大的分形维数,分形维数变化范围在2.600 5~2.648,平均为2.625 2。页岩分形维数与页岩比表面积和孔容呈正相关,且页岩中的微孔对页岩分形维数有重要影响。有机质、石英和黏土矿物对页岩分形维数影响较大,长石和碳酸盐对页岩分形维数影响较小;页岩分形维数与有机碳含量和石英含量呈正相关,而与黏土矿物含量呈负相关,其中黏土矿物中伊利石和绿泥石对页岩孔隙结构影响不同。页岩分形维数越大,页岩孔隙结构越复杂或孔隙表面越粗糙,页岩的吸附气体能力越强,但页岩气的解吸、扩散及渗流变得越困难。  相似文献   

8.
煤岩超微孔隙结构特征及其分形规律研究   总被引:2,自引:0,他引:2  
煤岩超微孔隙结构对煤的吸附和强度性能起到非常重要的决定作用.为了对其进行精确测定,采用了高精度压汞仪对来自8种不同硬度的煤样进行压汞法实验,测定得出超微孔隙结构的所有特征参数.根据压汞法基本原理和分形几何学理论建立了切合实际的煤孔隙分形维数计算模型,利用孔隙特征参数计算出各硬度的孔隙结构分形维数.研究发现:煤孔隙结构具有很好的分形特征,煤体越松软,分形性越好,用分形规律研究煤岩孔隙结构越精确;随着煤体硬度的增加,孔隙分形维数不断降低,煤体抗压强度不断增大;建立硬度与孔隙分形维数之间的定量关系式,可以用硬度定量描述煤的吸附性和抗压强度.研究结论对于煤层瓦斯的运移、瓦斯抽放以及瓦斯突出均有着极为重要的意义.  相似文献   

9.
为揭示硫化矿石吸附孔的分形特征,采集国内某铜矿矿样进行低温氮吸附实验。利用Quadra Sorb SI系列比表面测定仪分析粒径分别为0.300,0.125和0.088 mm 3种矿样的孔隙特征;运用FHH模型计算出各个矿样的分形维数,进一步分析硫化矿样的气体吸附能力与孔隙参数、分形维数之间的关系。研究结果表明:硫化矿样粒径越小,矿样微孔的比表面积和孔体积越大;硫化矿样对气体吸附一般发生在孔径为3~4 nm的微孔上;分形维数增大,微孔含量随之增高,比表面积也相应增大,孔表面则表现越粗糙且趋向于三维空间;分形维数反映了矿样的气体吸附能力,即分形维数与吸附能力具有正相关性。因此,由于硫化矿样粒径减小而引起的复杂孔隙结构及高分形维数,使得矿样更加容易吸附空气中的氧气而发生氧化自燃。  相似文献   

10.
为了研究沁水盆地煤体内部孔隙结构特征,取樊庄区块内寺河煤矿煤样进行不同粒径煤岩特性试验、压汞试验和液氮吸附试验,结合分形理论结果表明:寺河煤矿煤样以吸附孔发育为主,渗流孔发育为辅,基于孔隙在高压段和低压段不同的变形规律,对孔隙尺度界限进行了重新界定,获得孔隙体积占比以及孔隙表面积占比,随着粒径的减小,吸附孔相比于渗流孔体积逐渐增加,通过液氮吸附试验弥补了压汞试验由于进汞压力大导致煤样破坏,高压段试验不准确的缺点,得到了煤样孔结构分形特征.  相似文献   

11.
煤储层具有复杂的孔隙结构,在吸附甲烷气体过程中伴随能量变化。为研究煤储层孔隙和甲烷吸附过程中能量变化的非均质特性,使用分形维数分析煤孔隙的非均质性,运用吸附势和表面自由能理论分析等温吸附过程中的能量变化非均质性。结果表明:PY-1、PB-1、PB-2样品主要发育微孔,PY-2样品主要发育大孔,不同样品的孔隙分布差异明显;微孔是吸附甲烷的主要场所,但并非是影响甲烷吸附量的决定因素。煤的孔隙结构和本身性质影响了煤吸附甲烷的非均质性选择,镜质组含量越高,孔隙结构越复杂,孔隙分形维数越大,非均质性越强;甲烷吸附量越高,吸附势和表面自由能变化越大。  相似文献   

12.
张贝贝  沈军平  金超  刘剑 《科学技术与工程》2023,23(35):14955-14963
为探究邯郸九龙矿构造煤在压力作用下对煤孔隙结构造成产生的影响,选取九龙矿瓦斯突出煤层-山西组2号碎粒煤及碎裂煤为研究对象,对煤样进行加压处理,并利用低温氮吸附仪对加压前后的煤样进行低温氮吸附实验。利用传统低温氮实验数据定性分析和分形理论定量分析的方法,对实验前后煤样孔隙发育规模和结构变化进行对比分析。实验结果显示:压力对煤中的孔隙结构会造成一定的影响,加压后的碎粒煤孔隙结构变化情况较小,碎裂煤孔隙结构变化较为明显。碎粒煤孔容贡献基本不发生变化,碎裂煤孔容贡献度会发生变化,且孔容贡献度占比会更倾向于更小的孔径,表明压力在对煤产生影响时,孔径小的孔径对压力反应比孔径大的孔径反应更明显。碎裂煤和碎粒煤比表面积贡献均为较小的孔径,基本在2~4 nm左右波动,比表面积孔径贡献范围有轻微后移,但幅度不大。碎粒煤和碎裂煤在加压前后,微孔的分形维数高,拟合度均为0.99以上,小孔和中孔的分形维数较高,拟合度均为0.94以上。加压后,碎粒煤的煤样微孔复杂情况具有更简单的趋势,中孔和小孔的复杂情况具有更复杂趋势,但趋势均不明显,而碎裂煤在微孔的孔隙情况有轻微的变简单,在中孔和小孔的孔隙情况有变复杂的趋势,且趋势较为明显。九龙矿2号碎裂煤储层改造可以考虑在本煤层或在顶底板围岩进行水力压裂,而碎粒煤则需要通过水力冲孔出煤卸压或在顶底板围岩进行水力压裂。  相似文献   

13.
鄂尔多斯盆地宜川地区煤储层孔隙特征及其分形规律研究   总被引:4,自引:4,他引:0  
利用Quadrasorb SI自动低温氮吸附仪测试了宜川地区煤储层孔隙特征。实验表明:该区煤储层孔隙类型以微孔为主,且微孔大多为一端封闭的不透气性II类孔,小孔主要以开放型I类孔和"墨水瓶"型孔为主。同时,根据低温氮吸附实验数据,分析了宜川地区煤储层孔隙的分形维数与吸附参数之间的关系。结果表明:分维数D与VL和PL具有一定的相关性,即分维数D与VL和PL在一定程度上呈现正相关关系。宜川地区是深煤层煤层气的重要勘探区,本次研究将对该区煤层气的勘探开发具有重要意义。  相似文献   

14.
以山西组高煤级煤与页岩样品为例,通过低温氮气吸附实验研究了样品的孔隙结构特征,并基于FHH分形模型计算了样品的分维值,对页岩与煤层的孔隙分形特征进行了对比研究。结果表明:页岩样品以微孔为主,同时含有一定量的过渡孔,主要的储集空间由微孔和过渡孔提供。高煤级煤样品以过渡孔为主,主要的储集空间由过渡孔提供。在测试孔径范围内,页岩样品的比表面积远大于高煤级煤。页岩的孔隙形态上以四周开放的平行板孔和裂缝型孔为主,具有部分细颈瓶孔,高煤级煤的孔隙形态以封闭型孔为主,反映页岩储层微观渗流能力更强,可能是页岩中游离气比例高于煤层的原因之一。页岩与高煤级煤均具有显著的分形特征,页岩样品分维值高于高煤级煤,说明页岩孔隙的空间结构比高煤级煤更为复杂,非均质性更强;同时二者均具有双重分形特征,页岩渗流孔分维值低于吸附孔,反映页岩吸附孔孔隙结构更为复杂。与页岩相比,高煤级煤渗流孔和吸附孔的分维值均小于页岩,孔径分布集中于过渡孔,有利于煤层气快速到达产气高峰;而页岩孔径分布则集中于微孔和过渡孔,吸附气含量更高,并且过渡孔的孔隙结构以平行板孔为主,孔隙结构特征较微孔简单。  相似文献   

15.
纳米材料已被证明可以提高非常规油气采收率,但其在储层孔隙中的吸附与滞留机理尚未明确。本文以大庆油田上白垩统青山口组致密砂岩为研究对象,采用低温液氮吸附、润湿角测定、扫描电镜、核磁共振及离心实验方法,研究了纳米-滑溜水压裂液在孔隙中的吸附与滞留,以及其对微观孔隙结构参数的影响。结果表明,纳米滑溜水压裂液处理后,扫描电镜观察到纳米颗粒在孔隙中滞留,岩石润湿角降低30.28%~58.17%;孔隙结构由平板孔向墨水瓶孔过渡,比表面积及吸附量显著增加;微孔占比减小20%~25%,过渡孔占比增大21%~26%,总孔体积增大;分形维数变小更接近2,孔隙结构变简单。纳米颗粒在储层孔隙中的吸附与滞留,导致微观孔隙结构发生变化。实验结果与认识对纳米-滑溜水压裂液在致密砂岩储层中的应用具有重要意义。  相似文献   

16.
南方上奥陶统五峰组-下志留统龙马溪组海相页岩是中国页岩气主力开发层位,页岩微观孔隙结构特征的研究对于页岩含气性和开发储量的评价有重要意义。采用场发射扫描电镜和低温氮气吸附实验方法对蜀南地区长宁区块五峰-龙马溪组页岩微观孔隙结构进行了定性评价和定量表征。实验结果表明,蜀南地区五峰-龙马溪组页岩以有机质孔隙为主,局部可见粒间孔和粒内孔发育。氮气吸附回滞环属于H4型,对应纳米级孔隙类型为狭缝型;五峰-龙马溪组页岩平均比表面积17.35 m~2/g,平均孔体积16.70 mm~3/g,平均孔径9.82 nm;页岩纳米级孔隙表面具有分形特征,分形维数平均值为2.681;有机碳含量的增加使得纳米级孔隙数量增多,页岩分形维数增大,孔隙表面粗糙程度增大,页岩比表面积增大,页岩吸附能力增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号