首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
制备了Al2O3/Al-Cu和Al2O3/Al-Cu-Si原位复合材料,采用SEM观察显微组织,XRD分 析物相,EDS分析相所含元素.初步结果表明,原位合金化和原位颗粒共同强化金属基体是可 行的,合金元素Cu和Si出现在基体中,细小增强颗粒Al2O3呈弥散分布.  相似文献   

2.
用熔炼法制备TiB2/Al复合材料.通过添加Ti,B化合物,在纯铝基体中原位生成TiB2颗粒,基体得以增强.就TiB2的体积分数对复合材料机械性能和显微组织的影响进行了研究,并对两种Ti,B化合物(Ⅰ,Ⅱ号)的增强效果进行了比较.结果表明,TiB2/Al复合材料的机械性能明显优于铝基体.与Ⅰ号Ti,B化合物相比,Ⅱ号Ti,B化合物能更有效地提高复合材料的强度和硬度.TiB2/Al复合材料的拉伸强度和硬度随Ti,B化合物加入量增多而提高,而延伸率降低.含2.0%(体积分数)TiB2的复合材料其热轧退火态的拉伸强度和铸态布氏硬度分别为158MPa和388MPa,与纯铝基体相比,拉伸强度和硬度分别提高了111%和51%.  相似文献   

3.
无压渗透制备铝基复合材料及其性能的研究   总被引:4,自引:0,他引:4  
采用无压渗透新工艺制备了Al2O3颗粒增强铝基复合材料,叙述了无压渗透工艺过程。通过金相显微镜、X-射线衍射(XRD)、扫描电镜(SEM)、能谱(EDS)等手段,对(Al2O3)p/Al的微观结构进行了分析;测试了铝基复合材料的力学及热物理性能。结论表明,铝基复合材料显微结构致密、渗透完全。在Al2O3与Al的界面处,基体合金中的镁与增强剂Al2O3反应,原位生成MgAl2O4尖晶石晶体,其质量分  相似文献   

4.
Al_2O_3 弥散 Ti(C,N)基金属陶瓷刀具   总被引:1,自引:0,他引:1  
在Ti(C,N)基金属陶瓷中,通过加入Al2O3弥散颗粒,使材料的硬度和高温性能都得到提高,从而获得更好的切削耐磨性。研究结果表明:Al2O3的引入使Ti(C,N)基金属陶瓷的常温强度和韧性有所下降而硬度和高温力学性能得到了改善。切削试验表明:Ti(C,N)-Al2O3系金属陶瓷比硬质合金、Al2O3-TiC复合陶瓷刀具有更好的切削性能。SEM观察表明:在Ti(C,N)-Al2O3金属陶瓷中,Al2O3与Ti(C,N)有相互抑制晶粒生长的作用,使Ti(C,N)基金属陶瓷的晶粒更细化  相似文献   

5.
通过对Ti-Al-Ga系γ-TiAl基(α2+γ)双相合金的铸态及热等静压状态组织和室温拉伸性能的试验研究,发现Ga能明显地改变合金的组织,降低Ti-45Al-3Ga合金中γ相晶格的c/a比值,是改善(α2+γ)双相合金室温抗拉强度和室温塑性的有效合金元素.  相似文献   

6.
采用反应法,将NiCl2与TiCl4负载于复合载体MgCl2-SiO2上,制得新型双过渡金属催化体系TiCl4-NiCl2/MgCl2-SiO2/Al(i-Bu)3。该催化剂用于乙烯气相聚合,当x(Ni)为12.5%时,催化剂效率最高,聚合动力学属衰减型。催化剂因含有镍化合物具有齐聚及原位共聚性能,得到的聚乙烯具有支化度为3.6-7.2支化数/1000C的中密度聚乙烯,且产物相对分子质量增大。  相似文献   

7.
挤压铸造制备三维连续网络结构增强金属基复合材料   总被引:4,自引:0,他引:4  
基于真空反压浸渍多孔陶瓷获得一种新型三维连续网络结构增强的金属基复合材料的基础上,采用挤压铸造的方法对这种新型结构金属基复合材料的制备方法作进一步研究.以Al-TiO2-C系为例,对利用自蔓延高温合成方法(SHS)制备的Al2O3-TiC多孔连通网络陶瓷骨架进行挤压铸造Ly12Al合金液获得这种复合材料,并利用扫描电镜、光学显微镜和透射电镜对Al2O3-TiC多孔陶瓷材料,以及得到的三维连续网络结构增强金属基复合材料的微观形貌特征进行了观察和分析  相似文献   

8.
采用粉末渗镀法,研究了黄铜渗铝工艺。获得有效渗铝的工艺条件是:渗镀温度600℃,渗镀时间3h,渗剂组成是Al粉40%、NH4Cl2%和Al2O3粉58%。渗铝后的黄铜耐蚀性提高1.8倍,硬度增加25.6%,渗层厚度为50μm。通过X射线衍射分析等得出,黄铜渗铝层的结构由表面至基体是Cu(0.6108)Al(0.3892)→γ2-Cu9Al4→α-CuZn(含Al)→α-CuZn。  相似文献   

9.
采用反应法,将NiCl_2与TiCl_4负载于复合载体MgCl_2-SOf_2上,制得新型双过渡金属催化体系TiCl_4-NiCl_2/MgCl_2-SiO_2/Al(i-Bu)_3.该催化剂用于乙烯气相聚合,当x(Ni)为12.5%时,催化剂效率最高,聚合动力学属衰减型.催化剂因含有镍化合物具有齐聚及原位共聚性能,得到的聚乙烯具有支化度为3.6~7.2支化数/1000C的中密度聚乙烯,且产物相对分子质量增大。  相似文献   

10.
对FeNiCrAl合金量微组织和力学性能的研究表明,「Ni」/「Cr」≥0.9(摩乐兹)的合金以γ相为基体,「Ni」/「Cr」(摩尔比)=0.6-0.8和≤0.6的合金分别以γ+α双相和α相为基体,合金在不同温度热处理后,由于相的析出或溶解,显示出不同的力学性能。  相似文献   

11.
以钛铁粉、铬铁粉、铁粉、镍粉和胶体石墨等为原料,原位合成了TiC/自熔合金Ni40钢结硬质合金,并用扫描电镜(SEM)、X射线衍射仪和洛氏硬度计等对所制备的试样进行了组织结构和硬度分析.研究结果表明所合成的钢结硬质合金主要相组成为TiC和Fe-Cr-Ni固熔体,所合成的硬质相TiC颗粒细小,随烧结温度升高TiC颗粒略有长大.原位合成TiC/Ni40钢结硬质合金的密度和硬度则因烧结温度和硬质相TiC的含量不同而有所不同.原位合成TiC/Ni40钢结硬质合金的密度在5.35~5.96×103 kg/m3之间,硬度在HRC58.5~70.5之间.  相似文献   

12.
采用碳热还原TiO2的方法,向TiO2和活性炭原料中加入一定比例的NaCl,通过氯化物辅助碳热还原过程,以Co@C纳米粒子为催化剂,取摩尔比为1∶4∶0.5∶0.1的TiO2、活性炭、NaCl和Co@C纳米粒子混合物,在1 350 ℃反应合成TiC纳米线.利用XRD、SEM、TEM、HRTEM及EDS对产物进行物相、形貌、晶形及成分分析,结果表明,该产物为无定形CoO纳米包裹的单晶面心立方TiC纳米线.  相似文献   

13.
20钢表面双辉渗镀TiC陶瓷   总被引:1,自引:0,他引:1  
设计了一种独特的源极结构,运用双层辉光渗金属技术在20钢表面实现了Ti,C二元同时共渗并获得表面渗镀层.对渗镀层进行了微观组织、形貌、成分、物相和硬度的检测与分析.分析结果表明:渗镀层厚约21μm,表面呈颗粒状分布,主要由TiC陶瓷相构成,其结构致密,与基体结合良好,结合力为42N;源极钛靶与工件的极间距对渗镀层厚度及表面硬度值的影响较大,极间距在12~16mm时渗镀效果佳,该条件下所形成的渗镀层表面硬度较基体提高了10倍以上.  相似文献   

14.
在热力学分析的基础上,研究了承钢高炉炉缸沉积物的形成机理。结果表明:承钢高炉炉缸沉积物中的高熔点物质主要为TiC及少量的Ti(N,C)、Ti(C,N)。炉渣中的TiO2与焦炭发生直接还原反应生成TiC,随着铁液的形成,渣中的TiC被铁滴吸附,包裹在铁滴周围。TiC包裹着铁液沉降到炉底形成炉缸沉积物;在渣-铁界面和铁水-炉底耐火材料界面,由于浓度梯度和温度梯度的存在析出Ti(N,C)、Ti(C,N),铁水和炉渣团聚在炉缸中形成炉缸沉积物。  相似文献   

15.
16.
热爆反应原位生成TiC的热力学和动力学探讨   总被引:7,自引:0,他引:7  
利用Al-Ti-C系热爆反应过程中有关反应的自由能变化和DTA曲线,探讨了TiC的形成机理。研究结果表明,TiC、Al4C3和TiAl3都有可能存在于反应过程;  相似文献   

17.
通过实验研究了基体Al合金和TiC颗粒含量不同的四种Al/TiC复合材料的流动性.并根据流动性的差异,提出了不同的铸造工艺成型方法.  相似文献   

18.
利用热重分析仪测量了原位自生成技术制备的TiC/Ti-6Al复合材料高温连续氧化增重特性.结果表明,原位自生成TiC/Ti基复合材料在高温氧化时遵循抛物线规律,氧化增重在1073K时远大于873K和973K时,计算获得该复合材料的氧化激活能为255.7kJ/mol.研究发现,873K和973K时形成的氧化物是不连续的岛状分布,而在1073K时,氧化物已形成均匀连续的膜,这是由于复合材料的氧化首先发生在TiC颗粒的表面上,而不是像均质材料一样在整个表面上均匀地发生.  相似文献   

19.
本文用静滴法测定了TiC与45钢的润涅角。发现合金元素Mo、Ti均有改善其润涅性的作用,尤以钼的效果最为明显。  相似文献   

20.
采用密度泛函理论,选取B3P86/6-311++g(d,p)优化方法,研究了外电场对TiC分子的总能量、最高占据轨道能量、最低空轨道能量,以及能隙的影响.结果表明,外电场从0.0增加到0.015 a.u.时,体系的总能量随着外电场的增加而逐渐增大,但外电场从0.02 a.u.增加到0.05 a.u.时,总能量却随着电场的增加而减少;最高占据轨道能量EH、最低空轨道能量EL,以及能隙EG均随着外电场的增加而减小.能隙EG的减小,表明外电场使TiC分子的活性增加.因此,当TiC分子作为国际热核聚变实验堆第一壁候选材料时,应该考虑外电场导致TiC分子活性增加的不利影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号