首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
H R Brenner  V Witzemann  B Sakmann 《Nature》1990,344(6266):544-547
IN mammalian muscle, the subunit composition of the nicotinic acetylcholine receptor (AChR) and the distribution of AChRs along the fibre are developmentally regulated. In fetal muscle, AChRs are distributed over the entire fibre length whereas in adult fibres they are concentrated at the end-plate. We have used in situ hybridization techniques to measure the development of the synaptic localization of the messenger RNAs (mRNAs) encoding the alpha-subunit and the epsilon-subunit of the rat muscle AChR. The alpha-subunit is present in both fetal and adult muscle, whereas the epsilon-subunit appears postnatally and specifies the mature AChR subtype. The synaptic localization of alpha-subunit mRNA in adult fibres may arise from the selective down-regulation of constitutively expressed mRNA from extrasynaptic fibre segments. In contrast, epsilon-subunit mRNA appears locally at the site of neuromuscular contact and its accumulation at the end-plate is not dependent on the continued presence of the nerve terminal very early during synapse formation. This suggests that epsilon-subunit mRNA expression is induced locally via a signal which is restricted to the end-plate region and is dependent on the presence of the nerve only during a short period of early neuromuscular contact. Evidently, several mechanisms operate to confine AChR mRNAs to the adult end-plate region, and the levels of alpha-subunit and epsilon-subunit mRNAs depend on these mechanisms to differing degrees.  相似文献   

2.
W Thompson 《Nature》1983,302(5909):614-616
The synaptic connections among the cells of the vertebrate nervous system undergo extensive rearrangements early in development. During their initial growth, neurones apparently form synaptic connections with an excessive number of targets, later retracting a portion of these synapses in establishing the adult neural circuits. Because of the profound effects which experience has upon the developing nervous system, a question of considerable interest has been the role which the functional use of these developing synapses might play in determining the final pattern of connectivity. At the neuromuscular junction the early changes in synaptic connections are well documented, and here questions about the importance of function can be relatively easily addressed. Mammalian skeletal muscle fibres experience a perinatal period of synapse elimination so that all but one of several synapses formed on each muscle fibre are lost. This synapse elimination is sensitive to alterations of neuromuscular use or activity. Reduction of muscle use by tenotomy or by paralysis of the muscle with drugs blocking nerve impulse conduction or neuromuscular transmission delays or even prevents synapse loss, while increased use produced by stimulation of the muscle nerve apparently accelerates the rate at which synapses are lost. I report here a further examination of the role of neuromuscular activity in synapse elimination. I show that chronic neuromuscular stimulation accelerates synapse elimination but that this acceleration is dependent on the temporal pattern in which the stimuli are presented: brief stimulus trains containing 100 Hz bursts of stimuli produce this acceleration whereas the same number of stimuli presented continuously at 1 Hz do not. Furthermore, the 100 Hz activity pattern which is effective in altering synapse elimination also alters two other muscle properties: the sensitivity of the muscle fibers to acetylcholine and the 'speed' of muscle contractions. These findings suggest that the ability of muscle fibres to maintain more than one nerve terminal, like other muscle properties, is sensitive to the pattern of muscle use rather than just the total amount of use.  相似文献   

3.
Lin W  Burgess RW  Dominguez B  Pfaff SL  Sanes JR  Lee KF 《Nature》2001,410(6832):1057-1064
The development of chemical synapses is regulated by interactions between pre- and postsynaptic cells. At the vertebrate skeletal neuromuscular junction, the organization of an acetylcholine receptor (AChR)-rich postsynaptic apparatus has been well studied. Much evidence suggests that the nerve-derived protein agrin activates muscle-specific kinase (MuSK) to cluster AChRs through the synapse-specific cytoplasmic protein rapsyn. But how postsynaptic differentiation is initiated, or why most synapses are restricted to an 'end-plate band' in the middle of the muscle remains unknown. Here we have used genetic methods to address these issues. We report that the initial steps in postsynaptic differentiation and formation of an end-plate band require MuSK and rapsyn, but are not dependent on agrin or the presence of motor axons. In contrast, the subsequent stages of synaptic growth and maintenance require nerve-derived agrin, and a second nerve-derived signal that disperses ectopic postsynaptic apparatus.  相似文献   

4.
The basal lamina in the synaptic cleft of the vertebrate skeletal neuromuscular junction contains molecules that direct the formation of synaptic specializations in regenerating axons and muscle fibres. We have undertaken a series of experiments aimed at identifying and characterizing the molecules responsible for the formation of one of these specializations, the aggregates of acetylcholine receptors (AChRs) in the muscle fibre plasma membrane. We began by preparing an insoluble, basal lamina-containing fraction from Torpedo californica electric organ, a tissue which has a far higher concentration of cholinergic synapses than muscle, and showing that this fraction caused AChRs on cultured chick myotubes to aggregate. A critical step is learning whether or not the electric organ factor is similar to the receptor-aggregating molecule in the basal lamina at the neuromuscular junction. The importance of this problem is emphasized by reports that clearly non-physiological agents, such as positively charged latex beads, can cause AChR aggregation on cultured muscle cells. We have already shown that Torpedo muscle contains an AChR-aggregating factor similar to that of electric organ, although in much lower amounts. Here we demonstrate, using monoclonal antibodies, that the AChR-aggregating factor in our extracts of electric organ is, in fact, antigenically related to molecules concentrated in the synaptic cleft at the neuromuscular junction.  相似文献   

5.
Basal lamina-rich extracts of Torpedo californica electric organ contain a factor that causes acetylcholine receptors (AChRs) on cultured myotubes to aggregate into patches. Our previous studies have indicated that the active component of these extracts is similar to the molecules in the basal lamina which direct the aggregation of AChRs in the muscle fibre plasma membrane at regenerating neuromuscular junctions in vivo. Because it can be obtained in large amounts and assayed in controlled conditions in cell culture, the AChR-aggregating factor from electric organ may be especially useful for examining in detail how the postsynaptic apparatus of regenerating muscle is assembled. Here we demonstrate that the electric organ factor causes not only the formation of AChR aggregates on cultured myotubes, but also the formation of patches of acetylcholinesterase (AChE). This finding, together with the observation that basal lamina directs the formation of both AChR and AChE aggregates at regenerating neuromuscular junctions in vivo, leads us to hypothesize that a single component of the synaptic basal lamina causes the formation of both these synaptic specializations on regenerating myofibres.  相似文献   

6.
J M Bekkers  C F Stevens 《Nature》1989,341(6239):230-233
A CENTRAL assumption about long-term potentiation in the hippocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induction and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium and calcium permeability, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (approximately 70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excitatory synapses, approximately 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.  相似文献   

7.
Gally C  Eimer S  Richmond JE  Bessereau JL 《Nature》2004,431(7008):578-582
Clustering neurotransmitter receptors at the synapse is crucial for efficient neurotransmission. Here we identify a Caenorhabditis elegans locus, lev-10, required for postsynaptic aggregation of ionotropic acetylcholine receptors (AChRs). lev-10 mutants were identified on the basis of weak resistance to the anthelminthic drug levamisole, a nematode-specific cholinergic agonist that activates AChRs present at neuromuscular junctions (NMJs) resulting in muscle hypercontraction and death at high concentrations. In lev-10 mutants, the density of levamisole-sensitive AChRs at NMJs is markedly reduced, yet the number of functional AChRs present at the muscle cell surface remains unchanged. LEV-10 is a transmembrane protein localized to cholinergic NMJs and required in body-wall muscles for AChR clustering. We also show that the LEV-10 extracellular region, containing five predicted CUB domains and one LDLa domain, is sufficient to rescue AChR aggregation in lev-10 mutants. This suggests a mechanism for AChR clustering that relies on extracellular protein-protein interactions. Such a mechanism is likely to be evolutionarily conserved because CUB/LDL transmembrane proteins similar to LEV-10, but lacking any assigned function, are expressed in the mammalian nervous system and might be used to cluster ionotropic receptors in vertebrates.  相似文献   

8.
RIM1alpha is required for presynaptic long-term potentiation.   总被引:8,自引:0,他引:8  
Two main forms of long-term potentiation (LTP)-a prominent model for the cellular mechanism of learning and memory-have been distinguished in the mammalian brain. One requires activation of postsynaptic NMDA (N-methyl d-aspartate) receptors, whereas the other, called mossy fibre LTP, has a principal presynaptic component. Mossy fibre LTP is expressed in hippocampal mossy fibre synapses, cerebellar parallel fibre synapses and corticothalamic synapses, where it apparently operates by a mechanism that requires activation of protein kinase A. Thus, presynaptic substrates of protein kinase A are probably essential in mediating this form of long-term synaptic plasticity. Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable. Here we report that mossy fibre LTP in the hippocampus and the cerebellum is abolished in mice lacking RIM1alpha, an active zone protein that binds to Rab3A and that is also a protein kinase A substrate. Our results indicate that the long-term increase in neurotransmitter release during mossy fibre LTP may be mediated by a unitary mechanism that involves the GTP-dependent interaction of Rab3A with RIM1alpha at the interface of synaptic vesicles and the active zone.  相似文献   

9.
Neuroligins and neurexins link synaptic function to cognitive disease   总被引:1,自引:0,他引:1  
Südhof TC 《Nature》2008,455(7215):903-911
The brain processes information by transmitting signals at synapses, which connect neurons into vast networks of communicating cells. In these networks, synapses not only transmit signals but also transform and refine them. Neurexins and neuroligins are synaptic cell-adhesion molecules that connect presynaptic and postsynaptic neurons at synapses, mediate signalling across the synapse, and shape the properties of neural networks by specifying synaptic functions. In humans, alterations in genes encoding neurexins or neuroligins have recently been implicated in autism and other cognitive diseases, linking synaptic cell adhesion to cognition and its disorders.  相似文献   

10.
Dual-component NMDA receptor currents at a single central synapse   总被引:2,自引:0,他引:2  
E D'Angelo  P Rossi  J Garthwaite 《Nature》1990,346(6283):467-470
Present thinking about the way that the NMDA (N-methyl-D-aspartate) class of glutamate receptor operates at central synapses relies mainly on information obtained from single-channel and whole-cell recordings from cultured neurons stimulated by exogenous NMDA receptor agonists. The mechanisms that operate in the postsynaptic membrane of a normal neuron following release of the natural transmitter are far less clear. An important problem is that most normal neurons receive many excitatory synapses (10(3)-10(5) per cell) and these synapses are located on slender dendritic elements far away from the somatic recording site, making the study of discrete synaptic events difficult. Typically, when populations of synapses are activated, NMDA receptor-mediated synaptic potentials appear as slowly rising, long-lasting waves superimposed on faster, non-NMDA-receptor potentials. Although believed to be critical for NMDA receptor function, this slow time-course would not be predicted from single-channel kinetics and its origin remains puzzling. We have now analysed the events occurring at the level of a single excitatory synapse using a simple, small, neuron--the cerebellar granule cell--which has an unusually simple glutamatergic input. By applying high-resolution whole-cell recording techniques to these cells in situ, we were able to study the nature of elementary NMDA receptor-mediated synaptic currents. Contrary to expectations, the prominent currents are fast but are followed by slow ones. Both types of current are strongly voltage-dependent but differ subtly in this respect. Furthermore, the currents are absent unless glycine is provided.  相似文献   

11.
Rongo C  Kaplan JM 《Nature》1999,402(6758):195-199
Synaptic connections undergo a dynamic process of stabilization or elimination during development, and this process is thought to be critical in memory and learning and in establishing the specificity of synaptic connections. The type II calcium- and calmodulin-dependent protein kinase (CaMKII) has been proposed to be pivotal in regulating synaptic strength and in maturation of synapses during development. Here we describe how CaMKII regulates the formation of central glutamatergic synapses in Caenorhabditis elegans. During larval development, the density of ventral nerve cord synapses containing the GLR-1 glutamate receptor is held constant despite marked changes in neurite length. The coupling of synapse number to neurite length requires both CaMKII and voltage-gated calcium channels. CaMKII regulates GLR-1 by at least two distinct mechanisms: regulating transport of GLR-1 from cell bodies to neurites; and regulating the addition or maintenance of GLR-1 to postsynaptic elements.  相似文献   

12.
13.
Na channels in skeletal muscle concentrated near the neuromuscular junction   总被引:2,自引:0,他引:2  
K G Beam  J H Caldwell  D T Campbell 《Nature》1985,313(6003):588-590
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels.  相似文献   

14.
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis   总被引:1,自引:0,他引:1  
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.  相似文献   

15.
M Kano  U Rexhausen  J Dreessen  A Konnerth 《Nature》1992,356(6370):601-604
Persistent changes in synaptic efficacy are thought to underlie the formation of learning and memory in the brain. High-frequency activation of an afferent excitatory fibre system can induce long-term potentiation, and conjunctive activation of two distinct excitatory synaptic inputs to the cerebellar Purkinje cells can lead to long-term depression of the synaptic activity of one of the inputs. Here we report a new form of neural plasticity in which activation of an excitatory synaptic input can induce a potentiation of inhibitory synaptic signals to the same cell. In cerebellar Purkinje cells stimulation of the excitatory climbing fibre synapses is followed by a long-lasting (up to 75 min) potentiation of gamma-aminobutyric acid A (GABAA) receptor-mediated inhibitory postsynaptic currents (i.p.s.cs), a phenomenon that we term rebound potentiation. Using whole-cell patch-clamp recordings in combination with fluorometric video imaging of intracellular calcium ion concentration, we find that a climbing fibre-induced transient increase in postsynaptic calcium concentration triggers the induction of rebound potentiation. Because the response of Purkinje cells to bath-applied exogenous GABA is also potentiated after climbing fibre-stimulation with a time course similar to that of the rebound potentiation of i.p.s.cs, we conclude that the potentiation is caused by a calcium-dependent upregulation of postsynaptic GABAA receptor function. We propose that rebound potentiation is a mechanism by which in vivo block of climbing fibre activity induces an increase in excitability in Purkinje cells. Moreover, rebound potentiation of i.p.s.cs is a cellular mechanism which, in addition to the long-term depression of parallel fibre synaptic activity, may have an important role for motor learning in the cerebellum.  相似文献   

16.
Allen NJ  Bennett ML  Foo LC  Wang GX  Chakraborty C  Smith SJ  Barres BA 《Nature》2012,486(7403):410-414
In the developing central nervous system (CNS), the control of synapse number and function is critical to the formation of neural circuits. We previously demonstrated that astrocyte-secreted factors powerfully induce the formation of functional excitatory synapses between CNS neurons. Astrocyte-secreted thrombospondins induce the formation of structural synapses, but these synapses are postsynaptically silent. Here we use biochemical fractionation of astrocyte-conditioned medium to identify glypican 4 (Gpc4) and glypican 6 (Gpc6) as astrocyte-secreted signals sufficient to induce functional synapses between purified retinal ganglion cell neurons, and show that depletion of these molecules from astrocyte-conditioned medium significantly reduces its ability to induce postsynaptic activity. Application of Gpc4 to purified neurons is sufficient to increase the frequency and amplitude of glutamatergic synaptic events. This is achieved by increasing the surface level and clustering, but not overall cellular protein level, of the GluA1 subunit of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) glutamate receptor (AMPAR). Gpc4 and Gpc6 are expressed by astrocytes in vivo in the developing CNS, with Gpc4 expression enriched in the hippocampus and Gpc6 enriched in the cerebellum. Finally, we demonstrate that Gpc4-deficient mice have defective synapse formation, with decreased amplitude of excitatory synaptic currents in the developing hippocampus and reduced recruitment of AMPARs to synapses. These data identify glypicans as a family of novel astrocyte-derived molecules that are necessary and sufficient to promote glutamate receptor clustering and receptivity and to induce the formation of postsynaptically functioning CNS synapses.  相似文献   

17.
Mosca TJ  Hong W  Dani VS  Favaloro V  Luo L 《Nature》2012,484(7393):237-241
Synapse assembly requires trans-synaptic signals between the pre- and postsynapse, but our understanding of the essential organizational molecules involved in this process remains incomplete. Teneurin proteins are conserved, epidermal growth factor (EGF)-repeat-containing transmembrane proteins with large extracellular domains. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic whereas Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization trans-synaptically and cell autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-Spectrin. Genetic analyses of teneurin and neuroligin reveal that they have differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates target selection between specific motor neurons and muscles. Our study identifies the Teneurins as a key bi-directional trans-synaptic signal involved in general synapse organization, and demonstrates that proteins such as these can also regulate target selection.  相似文献   

18.
Saviane C  Silver RA 《Nature》2006,439(7079):983-987
What limits the rate at which sensory information can be transmitted across synaptic connections in the brain? High-frequency signalling is restricted to brief bursts at many central excitatory synapses, whereas graded ribbon-type synapses can sustain release and transmit information at high rates. Here we investigate transmission at the cerebellar mossy fibre terminal, which can fire at over 200 Hz for sustained periods in vivo, yet makes few synaptic contacts onto individual granule cells. We show that connections between mossy fibres and granule cells can sustain high-frequency signalling at physiological temperature. We use fluctuation analysis and pharmacological block of desensitization to identify the quantal determinants of short-term plasticity and combine these with a short-term plasticity model and cumulative excitatory postsynaptic current analysis to quantify the determinants of sustained high-frequency transmission. We show that release is maintained at each release site by rapid reloading of release-ready vesicles from an unusually large releasable pool of vesicles (approximately 300 per site). Our results establish that sustained vesicular release at high rates is not restricted to graded ribbon-type synapses and that mossy fibres are well suited for transmitting broad-bandwidth rate-coded information to the input layer of the cerebellar cortex.  相似文献   

19.
Buffelli M  Burgess RW  Feng G  Lobe CG  Lichtman JW  Sanes JR 《Nature》2003,424(6947):430-434
Synaptic activity drives synaptic rearrangement in the vertebrate nervous system; indeed, this appears to be a main way in which experience shapes neural connectivity. One rearrangement that occurs in many parts of the nervous system during early postnatal life is a competitive process called 'synapse elimination'. At the neuromuscular junction, where synapse elimination has been analysed in detail, muscle fibres are initially innervated by multiple axons, then all but one are withdrawn and the 'winner' enlarges. In support of the idea that synapse elimination is activity dependent, it is slowed or speeded when total neuromuscular activity is decreased or increased, respectively. However, most hypotheses about synaptic rearrangement postulate that change depends less on total activity than on the relative activity of the competitors. Intuitively, it seems that the input best able to excite its postsynaptic target would be most likely to win the competition, but some theories and results make other predictions. Here we use a genetic method to selectively inhibit neurotransmission from one of two inputs to a single target cell. We show that more powerful inputs are strongly favoured competitors during synapse elimination.  相似文献   

20.
W J Thompson  L A Sutton  D A Riley 《Nature》1984,309(5970):709-711
Skeletal motor neurones innervate the specialized 'types' of fibres comprising most mammalian muscles in a characteristic fashion: each motor neurone forms a 'motor unit' by innervating a set of fibres all of the same type. Because the type expression of adult muscle fibres is plastic and apparently controlled by their innervation, each motor neurone is thought to impose a common type differentiation on all the fibres in its motor unit. However, the situation in developing muscles cannot be this simple. Muscle fibres in neonates receive synaptic input from several motor neurones and achieve the adult, single innervation only after a period of 'synapse elimination. Despite this polyneuronal innervation, differentiated fibre types are present in neonatal muscles. This means either that the motor neurones polyneuronally innervate fibres in a random fashion and type expression is not determined by innervation or that the polyneuronal innervation is ordered in such a way that each fibre could receive unambiguous instructions for type differentiation. We have investigated these possibilities here by determining the fibre type composition of motor units in neonatal rat soleus muscle. We find that even during the time of polyneuronal innervation each motor neurone confines its innervation to largely one of two fibre types present in the muscle. Therefore, some mechanism during early development segregates the synapses of two groups of soleus motor neurones onto two separate populations of soleus muscle fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号