首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用激光熔覆技术制备了Ni60B镍基合金涂层以及微米WC、纳米WC和微-纳米WC颗粒增强的Ni60B基复合涂层(分别称为WCm、WCn和WCmn复合涂层).对制备涂层在Amsler200磨损试验机上进行了不同载荷和滑动距离的水润滑滑动磨损试验.结果表明:WC颗粒的加入显著提高了Ni60B涂层的耐磨性.WCm复合涂层和纳米WCn复合涂层的耐磨性差别不大,但磨损形貌不同.涂层在水润滑环境下的磨损量均远远低于干滑动摩擦,其原因是水膜的支撑或隔离作用降低了涂层与磨轮之间的接触应力,水的冷却作用减少了摩擦热引起的温度升高,降低了涂层摩擦表面的温升和热软化.水润滑摩损条件下,WCm和WCn复合涂层中过饱和W元素发生扩散和聚集.  相似文献   

2.
为研究刷镀电压对镍镀层摩擦磨损性能的影响,分别在不同刷镀电压下,采用快速镍刷镀方法在45~#钢表面制备工作层.在球-盘摩擦磨损试验机上,以Cr12钢球为摩擦配副进行油润滑条件下的摩擦磨损试验,通过磨损失重、油液的光谱和铁谱分析、摩擦系数、磨损表面形貌研究了不同镍镀层的摩擦磨损性能.结果表明:不同刷镀电压下制备的镍镀层的摩擦磨损性能存在较大差异.刷镀电压过低(8V)或过高(22V)时,镍镀层耐磨性能均下降;当刷镀电压为14V时,镍镀层的摩擦磨损性能最佳;镍镀层磨损机制以磨粒磨损和黏着磨损为主.  相似文献   

3.
为研究Cu/Ni多层膜的调制波长与力学性能的关系,采用计算机控制的单槽双脉冲控电位沉积系统,在Cu基体上沉积Cu/Ni多层膜,分别采用扫描电镜和纳米压痕技术对Cu/Ni多层膜的截面和硬度进行了测试.结果表明:电沉积方法制备的Cu/Ni多层膜具有良好的周期结构;在调制波长为37 nm时硬度达到极值;在调制波长小于37 nm时其硬度值明显下降.实验结果符合理论分析中多层膜的硬度随调制波长的变化规律,但临界调制波长大于理论计算结果.  相似文献   

4.
SiC/W纳米多层膜的微结构和微观力学性能   总被引:2,自引:0,他引:2  
用磁控溅射法在硅基底上制备了不同调制波长Λ的SiC/W纳米多层膜,利用小角度衍射技术(LXD)研究了各样品子层界面的调制周期性,并用上限为20mN的超显微硬度计UMHT-3,对上述纳米薄膜进行了多载荷微观力学性能测试.结果表明:纳米SiC/W调制多层膜的超显微硬度随测试负荷F和调制波长Λ的改变而变化,在负荷为5mN时峰值硬度为19.9GPa,与均匀混合的纳米薄膜相比,超显微硬度值提高了约1倍,显示出明显的硬度异常效应.结合实验结果对硬度值随调制波长Λ出现的峰值效应作了初步探讨.  相似文献   

5.
该文根据锌基合金不同使用工况,利用SRV滑动磨擦损实验仪和M-200磨损实验机研究了ZA27CuMgRE合金同材料为摩擦副,以及与45^#钢配副的磨擦磨损特性,研究发现,合金在30^#机油润滑时间材质或与45^#钢配副都具有良好的耐磨性能;耐干磨擦工况下易发生粘着,不宜使用,但也证明在短时间润滑失效时仍具有良好的拉伤抗力。  相似文献   

6.
润滑条件下钢/钢滑动摩擦副P-V图的研究   总被引:2,自引:0,他引:2  
在球盘式摩擦磨损试验机上,采用阶梯加载方式,测定了润滑条件下钢/钢滑动摩 擦副的临界载荷-速度(P-V)图,分析了P-V图各区域的摩擦磨损特性。试验发现, 边界润滑不仅出现在低速下,在高速下也同样存在。根据俄歇能谱及铁谱分析结果,可 以证明氧化膜对润滑状态转化起着决定性的作用。  相似文献   

7.
断裂韧性K_(1c)对WC-钢复合材料剥层磨损的影响   总被引:1,自引:0,他引:1  
本文初步研究了WC-钢复合材料的断裂韧性K_(1C)对剥层磨损的影响。试验材料是GJW-50合金(WC50%,基体成份为50GrMo钢)。 实验结果表明:在高应力、滑动及润滑条件下WC-钢复合材料的磨损是裂纹扩展速率控制的剥层磨损。K_(1C)是影响磨损体积和磨损速率的重要力学性能因素。最后,根据实验结果,提出了一个依赖于材料表面硬度和断裂韧性的磨损公式。  相似文献   

8.
含水量对磨料磨损的影响   总被引:1,自引:0,他引:1  
用两种典型的磨料(长石和石英沙),试验了不同含水量对塑料和钢的磨损的影响。指出了在磨料磨损过程中含水量是个敏感因素,分析了水在磨料磨损中的三个主要作用:(1)对砂粒的粘结作用;(2)摩擦氧化作用;(3)水膜的润滑作用。论述了磨料磨损过程中磨损机理的转变。此外,还试验了不同颗粒度和滑动速度对磨损的影响,最后提出了这些试验结果在实际应用中的可能性。  相似文献   

9.
分别采用双槽法和单槽法制备了不同调制波长的Cu/Ni多层膜,研究了多层膜硬度与调制波长之间的关系.结果表明,当调制波长大于33 nm时,硬度与调制波长的关系符合Hall-Petch关系式;小于33 nm时,偏离了Hall-Petch关系式;等于21 nm时,硬度出现了峰值,约为HV451.8.  相似文献   

10.
微组装纳米多层材料的力学性能研究   总被引:5,自引:0,他引:5  
为研究探索新材料,采用离子束溅射沉积的方法制备了子层厚度为纳米量级的陶瓷/金属以及陶瓷/高分子多层膜。对这些纳米多层膜的结构和硬度、韧性行为进行了研究。发现纳米多层膜的硬度行为强烈地依赖于材料系统,在某些系统中出现了超硬度效应,而在某些系统则没有这一现象。纳米多层膜的韧性比单相的陶瓷材料有明显提高。硬度、韧性等力学行为与多层结构的组分比例、调制波长等参数有关。研究表明纳米多层结构是获取具有优良力学性能新材料的有效途径。  相似文献   

11.
纳米厚度、表面光滑的氢化锂薄膜的制备研究具有十分重要的意义。综述了氢化锂薄膜的制备方法:电阻蒸发法和磁控溅射法。比较研究后认为这两种制备方法制备的氢化锂薄膜,表面粗糙度高,不能达到软x射线多层膜的要求。而脉冲激光气相沉积法可以制备表面超光洁,厚度最小为几个纳米的薄膜,是制备表面光滑的薄膜的一种重要制备方法。  相似文献   

12.
采用热丝化学气相沉积方法,优化金刚石薄膜制备工艺。通过改变甲烷浓度成功制备出厚度均匀的多层金刚石薄膜,实现了多种调制周期的金刚石薄膜制备,调制周期最小至100 nm。通过拉曼光谱和X射线衍射方法对单层以及多层金刚石薄膜进行应力分析,发现单层结构中,微米金刚石薄膜应力最大,随着金刚石晶粒尺寸的减小,薄膜应力减小;多层金刚石薄膜结构中,微米层与纳米层均匀交替生长,有效地降低了薄膜应力,有利于提高金刚石薄膜在应用中的稳定性。  相似文献   

13.
In this study, β-Cu2+xSe/SiC nano-multilayer films with different modulation period were successfully deposited on SiO2/Si substrates by sputtering alternately using Cu–Se and SiC targets. The deposited films were observed on both surface and cross-section, and the thermoelectric properties were studied. The results show that both carrier concentration and mobility at room temperature decreased with the reducing modulation period for the nano-multilayer films. The conductivity slightly decreased and Seebeck coefficient greatly increased with the reducing modulation period. As a result of competition, the power factor of the nano multilayer films increased with the reducing modulation period because the positive effect of the Seebeck coefficient exceeded the negative effect of the conductivity. In the case of β-Cu2+xSe/SiC nano multilayer film with the smallest modulation periods (210 ?nm), the power factor reached 0.39 ?mWm?1K?2 and 0.59 ?mWm?1K?2 at room temperature and 325 ?°C, respectively. The enhanced power factor for nano multilayer films is attributed to the scattering process at the β-Cu2+xSe/SiC layer interface, which reduces the carrier concentration and the mobility. It is concluded that the thermoelectric properties of β-Cu2+xSe films can be effectively improved by designing nano multilayer structure.  相似文献   

14.
制备含有不同厚度Ag(0.5、2、4nm)的Ag/ITO多层膜沉积在以蓝宝石为衬底的外延片上并与P-GaN相接触,经过一定的退火处理。研究了Ag厚度、退火温度、退火时间对Ag/ITO多层膜的透过率、方块电阻和接触电阻率的影响。得出这种光电性能优良的Ag/ITO膜作为P型透明电极应用于大功率LED有广阔的前景。  相似文献   

15.
聚酰亚胺(PI)/石墨烯复合薄膜兼备了可挠曲性及透明、导电性,可作为柔性透明导电电极用于柔性电子器件中。但附着于PI上的石墨烯易划伤,使其导电性变差。本文采用脉冲直流磁控溅射法,以PI/石墨烯为基体,镀制保护石墨烯的氧化锌薄膜。分别采用原子力显微镜、X射线衍射仪、台阶仪、霍尔效应仪及紫外-可见分光光度计检测PI/石墨烯/ZnO复合薄膜的表面形貌、晶体结构、薄膜厚度及导电、透光性能。结果表明,PI/石墨烯/ZnO复合薄膜结构致密,氧化锌以(002)为择优取向,最低方阻为1.9×104Ω/sq,略低于石墨烯的方阻,可见光区平均透光率达80%。  相似文献   

16.
在室温条件下,用直流磁控溅射Cu靶制备出了不同厚度的Cu膜,测量了Cu膜的光学透过率和面电阻,分析了光电性质薄膜厚度的变化情况.实验结果表明,随着Cu膜厚度的增加,其光学透过率逐渐减小,透过率在波长为580nm处出现峰值.Cu膜的面电阻随薄膜厚度的增加先急剧减小,然后减小变得缓慢,最后趋于定值.理论模拟了Cu膜的光学透过率随薄膜厚度的变化和光学透过率随入射光波长的变化,理论模拟结果与实验结果吻合.  相似文献   

17.
在干摩擦条件下利用 SRV磨损试验机比较了在硬质合金基体上金刚石薄膜、石墨 /金刚石复合膜以及硬质合金 3种试样的摩擦学性能。利用扫描电子显微镜观察了试样和磨痕的表面形貌。利用表面形貌仪测试了磨损体积。研究了振动频率对试样的摩擦学性能影响。结果表明 ,在干摩擦条件下 ,金刚石薄膜与石墨 /金刚石复合膜的摩擦学性能差别不大 ,二者的磨损机理均为微断裂磨损。在干摩擦条件下 ,高频时金刚石薄膜的耐磨性是硬质合金耐磨性的 8~ 10倍 ,其原因是硬质合金的磨损机理存在着从粘着磨损到微断裂磨损的转变  相似文献   

18.
A low-alloy gray cast iron containing hard carbide-forming elements, such as vanadium and chromium, was cast by sand mould casting. Its wear resistance was compared with that of an untreated gray cast iron. Three different loading conditions were tested under a constant speed. It was observed that this alloy could reduce the wear loss of standard gray cast iron by up to 89%, which was much greater than what was achieved in previous reports. Scanning electron microscopy (SEM) was used to determine the predominant wear mechanism of both the alloys. In a mild wear regime, the oxidative mechanism was predominant; however, in a severe wear regime, this mechanism was not predominant and the adhesive mechanism was involved. EDX analysis was conducted to evaluate the quantitative amounts of elements in the tribochemical films formed on the wear tracks.  相似文献   

19.
本文研究了内燃机汽缸套激光硬化层的显微组织。并进行了激光热处理汽缸套的室内快速模拟磨损试验。结果表明:激光热处理汽缸套具有良好的耐磨性和配付性。硬化带表面的熔化凝固层不损害缸套的耐磨性,也不造成活塞环过快磨损。但硬化带表面质量对汽缸套耐磨性影响显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号