首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The microstructure and electrical properties of ZnO-based varistors with the SiO 2 content in the range of 0-1.00mol% were prepared by a solid reaction route.The varistors were characterized by scanning electron microscopy,X-ray diffraction,energy-dispersive X-ray spectrometry,inductively coupled plasma-atomic emission spectrometry,and X-ray photoelectron spectroscopy.The results indicate that the average grain size of ZnO decreases with the SiO 2 content increasing.A new second phase (Zn 2 SiO 4) and a glass phase (Bi 2 SiO 5) are found.Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi 2 O 3 vaporization.The electric measurement shows that the incorporation of SiO 2 can significantly improve the nonlinear properties of ZnO-based varistors,and the nonlinear coefficients of the varistors with SiO 2 are in the range of 36.8-69.5.The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO 2 content of 0.75mol%.  相似文献   

2.
The kinetic characteristics of W grain growth operated by diffusion controlled Oswald ripening (DOR) during liquid phase sintering were studied. A liquid phase sintering of W-15wt%Cu was carried out by pushing compacts into a furnace at the moment when the temperature increased to 1340°C for different sintering times. The results show that liquid phase sintering produces the compacts with considerably low relative density and inversely, rather high homogeneity. On the basis of the data extracted from the SEM images, the kinetic equation of W grain growth, Gn = G0n+ kt, is determined in which the grain growth exponent n is 3 and the grain growth rate constant k is 0.15 μm3/s. The cumulative normalized grain size distributions produced by different sintering times show self-similar. The cumulative distribution function is extracted from the curves by non-linear fitting. In addition, the sintering kinetic characteristics of W-15wt%Cu compacts were also investigated.  相似文献   

3.
The influence of praseodymium (Pr) content on the solidification characteristics, microstructure, and mechanical properties of ZRE1 magnesium (Mg) cast alloy was investigated. The obtained solidification parameters showed that Pr strongly affected the solidification time, leading to refinement of the microstructure of the alloys. When the freezing time was reduced to approximately 52 s, the grain size decreased by 12%. Mg12Zn (Ce,Pr) was formed as a new phase upon the addition of Pr and was detected via X-ray diffraction analysis. The addition of Pr led to a substantial improvement in mechanical properties, which was attributed to the formation of intermetallic compounds; the ultimate tensile strength and yield strength increased by approximately 10% and 13%, respectively. Pr addition also refined the microstructure, and the hardness was recovered. The results herein demonstrate that the mechanical properties of Mg alloys are strongly influenced by their microstructure characteristics, including the grain size, volume fraction, and distribution of intermetallic phases.  相似文献   

4.
This paper focuses on the effects of alkline-earth metal titante AETiO_3(AE = Mg,Ca,Sr) doping on the microstructure and electric characteristics of CaCu_3Ti_4O_(12) thin films prepared by the sol-gel method.The results showed that the grain size of CCTO thin films could be increased by MgTiO_3 doping.The movement of the grain boundaries was impeded by the second phases of CaTiO_3 and SrTiO_3 concentrating at grain boundaries in CaTiO_3 and SrTiO_3 doped CCTO thin films.Rapid ascent of dielectric constant could be observed in 0.1Mg TiO_3 doped CCTO thin films,which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed.In addition,the nonlinear coefficient(α),threshold voltage(V_T) and leakage current(I_L) of AETiO_3 doped CCTO thin films(AE = Mg,Ca,Sr) showed different variation with the increasing content of the MgTiO_3,CaTiO_3 and SrTiO_3.  相似文献   

5.
A cellular automata (CA) method was employed to model static coarsening controlled by diffusion along grain boundaries at 1173K and through the bulk at 1213 and 1243K for a two-phase titanium alloy. In the CA model, the coarsening rate was inversely proportional to the 3rd power of the average grain radius for coarsening controlled by diffusion along grain boundaries, and inversely proportional to the 2nd power of the average grain radius for coarsening controlled by diffusion through the bulk. The CA model was used to predict the morphological evolution, average grain size, topological characteristics, and the coarsening kinetics of the Ti-6Al-2Zr-1Mo-1V (TA15) alloy during static coarsening. The predicted results were found to be in good agreement with the corresponding experimental results. In addition, the effects of the volume fraction of the phase (Vf ) and the initial grain size on the coarsening were discussed. It was found that the predicted coarsening kinetic constant increased with Vf and that a larger initial grain size led to slower coarsening.  相似文献   

6.
The grain refinement mechanisms of Sr in the AZ31 magnesium alloys were studied by both phase diagram calculation and experimental analysis.The influence of Sr content on the solute distribution coefficients of Al and Zn during solidification was investigated in order to find out whether Sr addition can enhance the grain refinement efficiency brought by Al and Zn.The results showed that Sr addition can promote the segregation in liquid phases for both Al and Zn during solidification,therefore enhance the grain refinement effects by Al and Zn in AZ31 magnesium alloys.And the effect of Sr addition on the solute distribution coefficients for Al is larger than that of Zn.Sr addition can improve the GRF values by itself and also improve the GRF values of Al and Zn to the AZ31 magnesium alloys,and the grains are refined consequently.  相似文献   

7.
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries.  相似文献   

8.
Low-carbon steel sheets DC04 used in the automotive industry were subjected to cold rolling for thickness reduction from 20% to 89%. The desired thickness was achieved by successive reductions using a rolling mill. The influence of thickness reduction on the microstructure was studied by scanning electron microscopy. Microstructure evolution was characterized by the distortion of grains and the occurrence of the oriented grain structure for high cold work. A mechanism of grain restructuring for high cold work was described. The occurrence of voids was discussed in relation with cold work. The evolution of voids at the grain boundaries and inside the grains was also considered. To characterize the grain size, the Feret diameter was measured and the grain size distribution versus cold work was discussed. The chemical homogeneity of the sample was also analyzed.  相似文献   

9.
The dependence of flow volume on the pressure difference between the ports of a U-tube was determined for both laminar and turbulent flows of a magnetic fluid.The results showed that the dependence was linear in the case of laminar flow but was non-linear in the case of turbulent flow.In addition,the inductance and the voltage difference across two coils around the arms of the U-tube were calculated.The voltage difference was proportional to the flow volume and inversely proportional to the square of the coil length.These theoretical and experimental results demonstrate that the design of magnetic-fluid-based flow sensors is feasible.  相似文献   

10.
In this study, the microstructure evolution of rapidly solidified ASP30 high-speed steel particles was predicted using a simulation method based on the cellular automaton-finite element (CAFE) model. The dendritic growth kinetics, in view of the characteristics of ASP30 steel, were calculated and combined with macro heat transfer calculations by user-defined functions (UDFs) to simulate the microstructure of gas-atomized particles. The relationship among particle diameter, undercooling, and the convection heat transfer coefficient was also investigated to provide cooling conditions for simulations. The simulated results indicated that a columnar grain microstructure was observed in small particles, whereas an equiaxed microstructure was observed in large particles. In addition, the morphologies and microstructures of gas-atomized ASP30 steel particles were also investigated experimentally using scanning electron microscopy (SEM). The experimental results showed that four major types of microstructures were formed: dendritic, equiaxed, mixed, and multi-droplet microstructures. The simulated results and the available experimental data are in good agreement.  相似文献   

11.
Silver in the form of AgNO3 was added to ZnO-based varistor ceramics prepared by the solid-state reaction method. The effects of AgNO3 on both the microstructure and electrical properties of the varistors were studied in detail. The optimum addition amount of AgNO3 in ZnO-based varistors was also determined. The mechanism for grain growth inhibition by silver doping was also proposed. The results indicate that the varistor threshold voltage increases substantially along with the AgNO3 content increasing from 0 to 1.5mol%. Also, the introduction of AgNO3 can depress the mean grain size of ZnO, which is mainly responsible for the threshold voltage. Furthermore, the addition of AgNO3 results in a slight decrease of donor density and a more severe fall in the density of interface states, which cause a decline in barrier height and an increase in the depletion layer.  相似文献   

12.
The microstructure and electrical properties of ZnO-based varistors with the SiO2 content in the range of 0–1.00mol% were prepared by a solid reaction route. The varistors were characterized by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectrometry, inductively coupled plasma-atomic emission spectrometry, and X-ray photoelectron spectroscopy. The results indicate that the average grain size of ZnO decreases with the SiO2 content increasing. A new second phase (Zn2SiO4) and a glass phase (Bi2SiO5) are found. Element Si mainly exists in the grain boundary and plays an important role in controlling the Bi2O3 vaporization. The electric measurement shows that the incorporation of SiO2 can significantly improve the nonlinear properties of ZnO-based varistors, and the nonlinear coefficients of the varistors with SiO2 are in the range of 36.8–69.5. The varistor voltage reaches the maximum value of 463 V/mm and the leakage current reaches the minimum value of 0.11 μA at the SiO2 content of 0.75mol%.  相似文献   

13.
利用传统陶瓷制备工艺制备具有一定压敏特性的ZnO陶瓷材料,详细分析了Bi2O3掺杂对材料性能的影响及导致这一影响的具体原因,用MY3C-2型压敏电阻器三参数测试仪测试了样品的压敏电压,压比和漏流,并用BD-86型X射线衍射仪进行了物相分析,测试结果表明:在适合掺杂范围内,Bi2O3的增加有利于样品的非线性系数α及压敏电压的提高,且漏流IL随掺杂量的增加减小,超出这一范围后,样品的电学性能将会恶化,物相分析表明在添加Bi2O3,Sb2O3和BaCO3的ZnO陶瓷中,存在ZnO相,Bi2O3相,Zn223Sb0.67O4(尖晶石)相和BaSb2O6(偏锑酸钡)相。  相似文献   

14.
本文根据ZnO压敏电阻器的导电模型探讨了晶粒尺寸、形状、晶界结构等因素对ZnO压敏电阻大电流特性的影响;讨论了影响ZnO压敏电阻器残压特性的主要因素及机理,从而获得了改善其残压特性的有效方法.  相似文献   

15.
氧化锌压敏电阻器具有优良的非线性伏安特性,在稳态工作电压下漏电流很小(能耗低).利用这些特性可制造各种电子器件的过电压保护、电子设备的雷击浪涌保护、负载开关的浪涌吸收等电子保护装置.综述了ZnO压敏材料的导电机理、老化、非线性功能添加剂以及制备工艺等方面的研究进展,指出ZnO压敏电阻器的发展方向为片式叠层化、低压化以及对导电机理的深入研究.  相似文献   

16.
为了提高氧化锌(ZnO)压敏电阻的电学性能,采用常规烧结并在ZnO压敏电阻中掺杂预先合成的BiSbO4和Zn2SiO4,研究不同掺杂比例对ZnO压敏电阻的微观结构、电学性能、通流能力的影响.结果表明:ZnO压敏电阻在掺杂BiSbO4和Zn2SiO4后,能够有效抑制ZnO晶粒变大,晶体结构变得致密均匀,致密性有所提高,有效提高压敏特性和通流能力.BiSbO4和Zn2SiO4掺杂比例为3∶1的样品综合性能比较优异,样品的致密度为5.58 g·cm-3,压敏电位梯度达到425 V·mm-1,非线性系数为70,漏电流为1.2×10-7 A·cm-2,能量耐受能力达到334.21 J·cm-3,残压比为2.5.  相似文献   

17.
本文将人工神经网络应用于ZnO压敏陶瓷电性能参数的预测。结果表明BP网络运用于处理象ZnO压敏陶瓷材料预测这类从配方工艺到性能能数的非线性问题,该方法可望成为电子陶瓷材料研究的有效的辅助手段。  相似文献   

18.
研究了不同种类的玻璃料对ZnO-玻璃系压敏电阻电性能的影响.实验表明加入G3 玻璃料制得的样品具有较好的电性能,并有很高的工作稳定性.还研究了ZnO-玻璃系压敏电阻的微观结构和介电性能  相似文献   

19.
La2O3掺杂的TiO2电容—压敏电阻器特性研究   总被引:11,自引:0,他引:11  
为改善TiO2电容-压敏电阻器的非线性,文章通过添加少量La2O3,使其非线性系数得到提高,并对其原因进行了分析.结果表明,La2O3添加剂可提高材料晶界势垒高度,从而提高了其非线性系数.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号