首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
对问题y=f(x)在(a,b)、(b,c)上均单调增加(或减少),则y=f(x)在(a,c)上是否单调增加(或单调减少)进行探讨,得出几个结论。  相似文献   

2.
本文证明了在以下条件: 若f(x,y)是区域D:|x-x_0|≤a,|y-y_0|≤b上的函数,并且|f(x,y)|≤M,当固定x,y∈[y_0-b,y_0+b]时,f(x,y)是y的左连续递增涵数;当固定y,x∈[x_0-a,x_0+a]时,f(x,y)是x的递增涵数时,那么(E)在(?){a,b/M}上有递增函数解。  相似文献   

3.
本文绘出两个定理,为判断一元函数的周期性提供了方便。定理1若函数y=f(x)在R上的图象关于直线x=a与x=b(a<b)对称,则函数f(x)是周期函数。定理2若函数y=f(x)在R上的图象关于点A(a,y0)和直线x=b(a相似文献   

4.
证明了若f:[a,b]→[a,b]为单调增加的连续函数,λ∈(0,1),定义Fλ:[a,b]→[a,b],Fλx=(1-λ)x+λf(x),x1∈[a,b],xn+1=Fλxn=Fλnx1,n≥1,则{xn}单调地收敛于f的1个不动点.  相似文献   

5.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

6.
马欣荣建立了最广泛的一对矩阵反演(f,g)-反演,它取决于所给的一对函数f(x,y)、g(x,y),对Aa,b,c,是否满足方程g(a,b)f(x,c)-g(a,c)f(x,b) g(b,c)f(x,a)=0,并给出了该反演的算子法证明.文章就(f,g)-反演给出了较简单、易于理解的数学归纳法证明.  相似文献   

7.
本文应用有限复盖定理,对二元函数可积的充分性给出了两个新结论.定理1 设f(x,y)是定义在有界闭区域D={(x,y)|a≤x≤b,c≤y≤d}上的有界函数.若f(x,y)在D上对y关于x一致连续,对x只有第一类间断点,则f(x,y)在D上可积.定理2 设f(x,y)是定义在有界闭区域D={(x,y)|a≤x≤b,c≤y≤d}上的有界函数.f(x,y)在D上有无穷多个间断点,但对(?)(x_0,y_0)∈D,极限(?) f(x,y)都存在,则f(x,y)在D上可积.  相似文献   

8.
证明了定义在[a,b]上的有界函数f(x),若只有第一类间断点,则f(x)在[a,b]上Riemann可积,另外,证明了一个导函数只能有第二类间断点,有间断点的单调函数不存在原函数。  相似文献   

9.
严格不变拟单调性   总被引:1,自引:0,他引:1  
本文对严格拟单调进行推广,定义了严格不变拟单调:设K为Rn中的不变凸集,η:Rn×Rn→Rn,如果f是不变拟单调的,且对x,y∈K,x≠y,存在z∈{y λη(x,y):λ∈(0,1)},使得η(x,y)Tf(z)≠0,则称f为集合K上相对于η的严格不变拟单调映射.并建立了严格不变拟单调与严格预拟不变凸之间的关系:设K为Rn中的不变凸集,f是K上的可微函数,η:Rn×Rn→Rn,如果η满足文中所述条件1,则f是集合K上相对于η的严格预拟不变凸函数的充分必要条件是f是集合K上相对于η的严格不变拟单调,且对所有x,y∈K,有f(y)≤f(x)f(y η(x,y))≤f(x)成立.  相似文献   

10.
当函数f(x)在区间[a,b]上(R)可积,且f(x)>0(或f(x)<0)在[a,b]上几乎处处成立时,给出了(R)积分不等式以∫a^bf(x)dx>0(或∫a^bf(x)dx<0)及其证明。  相似文献   

11.
讨论带导数项的方程 y( 4) (x) =f(x ,y(x) ,y′(x) ,y″(x) ,y (x) )在非齐次边值条件 y(0 )=a ,y(1) =b ,y″(0 ) =c ,y″(1) =d下正解的存在性 ,其中a≥ 0 ,b≥ 0 ,c≤ 0 ,d≤ 0 .假定 f在零点次线性增长 ,在无穷远点超线性增长 ,则上述问题当max{a ,b ,-c ,-d}充分小时有非负解存在 ,当max{a ,b ,-c ,-d}充分大时无非负解存在 .  相似文献   

12.
二阶变系数线性微分方程的Riccati方程解法   总被引:1,自引:0,他引:1  
在(b′(x)b+2a(x)b(x))/b~2(x)≡c(常数)条件下,给出了微分方程y″+a(x)y′+b(x)y=f(x)(1)相对应的Riccati方程z′=z~2-a(x)z+b(x)(2)存在通解公式,进而得出了微分方程(1)或其齐次方程的通解公式.应用这些只与方程系数a(x)与b(x)相关的求解公式,求其通解过程十分简捷.  相似文献   

13.
设m,r是适合2|m,2r,r>1的正整数;Ur,Vr是适合Vr+Ur-1=(m+-1)r的整数;a,b,c是适合a=|Vr|,b=|Ur|,c=m2+1的正整数.证明了:如果b≡3(mod 4),b或c是素数,则方程x2+by=cz仅有正整数解(x,y,z)=(a,2,r).  相似文献   

14.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

15.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

16.
本文研究了如下的奇Cauchy问题:我们所得到的主要结果是:若y≠0时,a,b,c,f∈c~1,而且存在充分小的正数δ,成立估计式则当τ(x)≡0,v(x)≡0时,问题(1)(2)存在着唯一的正则解u(x,y)∈D_1[u]≡{u(x,y)|u=0(1)y~(3-m/2)}.若把关于f的条件改为D_2[u]≡{u(x,y)|u=O(1)y~(2-m/2)}.这时系数a,b,c在y→0~+时还允许有奇性,因此在00,00也可以类似地得到上面的结果.  相似文献   

17.
定积分的第二中值公式有下列三个定理给出的三种形式。定理1 假设函数f(x)在闭区间[a,b]上单调减小(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得定理2 假设函数f(x)在闭区间[a,b]上单调增加(包括广义的)且非负,又函数g(x)在[a,b]上可积,则在闭区间[a,b]上至少有一点ζ,使得  相似文献   

18.
设整数a,b,c,d,e,f满足ab≥0,cd≥0,ef≥0,a≡b (mod 2),c≡d (mod 2),e≡f (mod 2),a≥c≥e≥2,a=c时b≥d,c=e时d≥f.最近作者证明了如果有序六元组(a,b,c,d,e,f)在整数环上通用(即每个n=0,1,2,…可表成x(ax+b)/2+y(cy+d)/2+z(ez+f)/2的形式,其中x,y,z为整数),则它必在我们列出的12082个有序六元组中.本文中我们明确列出那12082个有序六元组并分析这些数据,还证明了许多满足a≤10的有序六元组确在整数环上通用.  相似文献   

19.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

20.
半质环的一个交换性定理   总被引:2,自引:2,他引:0  
证明了满足下列条件的半质环是交换环:若对R中任意元a,c,R中非零中心元b,都有依于a,b,c的整系数多项式f(x,y),使[a-f(a,b),c]∈Z(R)其中f不含a的一次项.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号