首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc)and fields, large coherence length, absence of Weak links, higher Tc (Tc = 39 K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb3Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nenomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scele defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for many practical applications at 5K to 25K up to 5T.  相似文献   

2.
The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7 T at liquid helium temperature (4.2 K), significantly lower than about 10 T for Nb-Ti (ref. 6) and approximately 20 T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2 K greater than 14 T. In addition, very high critical current densities at 4.2 K are achieved: 1 MA cm-2 at 1 T and 105 A cm-2 at 10 T. These results demonstrate that MgB2 has potential for high-field superconducting applications.  相似文献   

3.
High critical currents in iron-clad superconducting MgB2 wires   总被引:17,自引:0,他引:17  
Jin S  Mavoori H  Bower C  van Dover RB 《Nature》2001,411(6837):563-565
Technically useful bulk superconductors must have high transport critical current densities, Jc, at operating temperatures. They also require a normal metal cladding to provide parallel electrical conduction, thermal stabilization, and mechanical protection of the generally brittle superconductor cores. The recent discovery of superconductivity at 39 K in magnesium diboride (MgB2) presents a new possibility for significant bulk applications, but many critical issues relevant for practical wires remain unresolved. In particular, MgB2 is mechanically hard and brittle and therefore not amenable to drawing into the desired fine-wire geometry. Even the synthesis of moderately dense, bulk MgB2 attaining 39 K superconductivity is a challenge because of the volatility and reactivity of magnesium. Here we report the successful fabrication of dense, metal-clad superconducting MgB2 wires, and demonstrate a transport Jc in excess of 85,000 A cm-2 at 4.2 K. Our iron-clad fabrication technique takes place at ambient pressure, yet produces dense MgB2 with little loss of stoichiometry. While searching for a suitable cladding material, we found that other materials dramatically reduced the critical current, showing that although MgB2 itself does not show the 'weak-link' effect characteristic of the high-Tc superconductors, contamination does result in weak-link-like behaviour.  相似文献   

4.
The magnetization of dense MgB2/Ta/Cu wires prepared by the powder-in-tube method is measured by a SQUID magnetometer. The results indicate that the critical temperature of MgB2/Ta/Cu is around 38.4 K with a sharp transition width of 0.6 K. The MgB2/Ta/Cu wire shows a strong flux pinning and the critical current density is higher than 105 A/cm2 (5 K, self-field) and 104 A/cm2 (20 K, 1 T). Also, the irreversibility field of the sample reaches 6.6 T at 5 K.  相似文献   

5.
We prepared a series of MgB2 bulk samples under different temperatures, holding time and increasing rates in temperature by the solid state reaction. The thermodynamic behavior and phase formation in the Mg-B system were studied by using DTA, XRD and SEM. The results indicate that the formation of the MgB2 phase is very fast and the high increasing rate in temperature is necessary to obtain high quality MgB2. In addition, the effects of the Zr-doping in Mg1-xZrxB2 bulk samples fabricated by the solid state reaction at ambient pressure on phase compositions, microstructure and flux pinning behavior were investigated by using XRD, SQUID magnetometer, SEM and TEM. Critical current density Jc can be significantly enhanced by the Zr-doping and the best data are achieved in Mg0.9Zr0.1B2. For this sample, Jc values are remarkably improved to 1. 83 × 106 A/cm2 in self-field and 5. 51 × 105 A/cm2in 1T at 20K. Also, high quality MgB2/Ta/Cu wires and tapes with and without Ti-doping, MgB2/Fe wires and 18 filamen  相似文献   

6.
The discovery of superconductivity at 39 K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures, their in-field performance is compromized by their large anisotropy, the result of which is to restrict high bulk current densities to a region much less than the full magnetic-field-temperature (H-T) space over which superconductivity is found. Moreover, the weak coupling across grain boundaries makes transport current densities in untextured polycrystalline samples low and strongly sensitive to magnetic field. Here we report that, despite the multiphase, untextured, microscale, subdivided nature of our MgB2 samples, supercurrents flow throughout the material without exhibiting strong sensitivity to weak magnetic fields. Our combined magnetization, magneto-optical, microscopy and X-ray investigations show that the supercurrent density is mostly determined by flux pinning, rather than by the grain boundary connectivity. Our results therefore suggest that this new superconductor class is not compromized by weak-link problems, a conclusion of significance for practical applications if higher temperature analogues of this compound can be discovered.  相似文献   

7.
采用原位法粉末装管工艺制备了MgB2-xCx/Nb/Cu单芯线材.通过X射线衍射(XRD)、扫描电镜(EMS)和物性测试仪(PPMS)等手段研究了无定形C掺杂对线材微观结构及超导电性的影响.结果显示,随着C掺杂量的增加,进入MgB2晶格的C含量增加,MgB2层间结构不变.样品性能达到实用化超导磁体要求,在温度30 K外场0.2 T条件下,C掺杂量x=0,0.05,0.10,0.15的样品临界电流密度分别达8.1×104,1.7×105,1.6×105和1.0×105A/cm2.实验表明最佳C掺杂量x在0.05与0.10之间.  相似文献   

8.
利用基于密度泛函理论(DFT)的线性缀加平面波方法(LAPW)对多频带双能隙超导体二硼化镁进行电子结构研究,研究了二硼化镁的电子能带图、态密度(DOS)和电荷密度.对二硼化镁进行电子掺杂和空穴掺杂,分别用铝原子代替镁原子,碳原子代替硼原子,对其能带和电荷密度的改变进行探讨.  相似文献   

9.
Magnesium diboride, MgB2, has a relatively high superconducting transition temperature, placing it between the families of low- and high-temperature (copper oxide based) superconductors. Supercurrent flow in MgB2 is unhindered by grain boundaries, making it potentially attractive for technological applications in the temperature range 20-30 K. But in the bulk material, the critical current density (Jc) drops rapidly with increasing magnetic field strength. The magnitude and field dependence of the critical current are related to the presence of structural defects that can 'pin' the quantized magnetic vortices that permeate the material, and a lack of natural defects in MgB2 may be responsible for the rapid decline of Jc with increasing field strength. Here we show that modest levels of atomic disorder induced by proton irradiation enhance the pinning of vortices, thereby significantly increasing Jc at high field strengths. We anticipate that either chemical doping or mechanical processing should generate similar levels of disorder, and so achieve performance that is technologically attractive in an economically viable way.  相似文献   

10.
In January of 2001 the superconductivity of the compound MgB2 with a critical temperature Tc of up to 39 K was discovered. This Tc is the highest in all intermetallic compound and alloy superconductors. MgB2 has a simple structure and its manufacturing capital cost is lower, therefore it could become a practical superconductor in the future. The recent progress is reviewed here which covers the progress in electronic structure, high Tc mechanism, superconducting parameters (Debye temperature, specific heat coefficient of electron, critical fields, coherent length, penetration depth, energy gap, critical current and relaxation rate of flux). Moreover the issue on power transmission is discussed.  相似文献   

11.
Vortex dynamics in superconducting MgB2 and prospects for applications   总被引:9,自引:0,他引:9  
Bugoslavsky Y  Perkins GK  Qi X  Cohen LF  Caplin AD 《Nature》2001,410(6828):563-565
The recently discovered superconductor magnesium diboride, MgB2, has a transition temperature, Tc, approaching 40 K, placing it intermediate between the families of low- and high-temperature superconductors. In practical applications, superconductors are permeated by quantized vortices of magnetic flux. When a supercurrent flows, there is dissipation of energy unless these vortices are 'pinned' in some way, and so inhibited from moving under the influence of the Lorentz force. Such vortex motion ultimately determines the critical current density, Jc, which the superconductor can support. Vortex behaviour has proved to be more complicated in high-temperature superconductors than in low-temperature superconductors and, although this has stimulated extensive theoretical and experimental research, it has also impeded applications. Here we describe the vortex behaviour in MgB2, as reflected in Jc and in the vortex creep rate, S, the latter being a measure of how fast the 'persistent' supercurrents decay. Our results show that naturally occurring grain boundaries are highly transparent to supercurrents, a desirable property which contrasts with the behaviour of the high-temperature superconductors. On the other hand, we observe a steep, practically deleterious decline in Jc with increasing magnetic field, which is likely to reflect the high degree of crystalline perfection in our samples, and hence a low vortex pinning energy.  相似文献   

12.
用固相反应法制备了 T =39K的新型超导体 Mg B2 ,用 X射线衍射研究了单相 Mg B2 的实验室制备过程 ,探讨了煅烧温度、煅烧时间以及煅烧环境对产物纯度的影响 ,为进行高纯度Mg B2 化合物的工业化生产提供了原始资料 .  相似文献   

13.
Nano-SiC doped MgB2 tapes were prepared by the in situ powder-in-tube method. Heat treatment was performed at 650℃ for 1 h. XRD data indicate that SiC particles had reacted with the MgB2 during sintering process. MgB2 core seemed to be denser after SiC doping, and the critical temperature was slightly depressed. The critical current density Jc of the SiC doped tapes was significantly enhanced in magnetic fields up to 14 T compared to the undoped ones. For the 5% SiC doped samples, Jc was in- creased by a factor of 32 at 4.2 K, 10 T. The enhancement of Jc-B properties in SiC doped MgB2 tapes is considered to be due to the enhancement of grain linkages and the introduction of effective flux pining centers. The substitution of B by C in MgB2 grains is thought to be the main reason for the improve- ment of the flux pinning ability in SiC doped MgB2 tapes.  相似文献   

14.
MgB2适合于制备约瑟夫森结,在超导电子学领域有很好的应用前景。制备高质量的MgB2薄膜至关重要,应用Mg-B/Mg-B-O体系的相图指导MgB2薄膜生长意义重大。总结MgB2相体系及相关系,详细对比分析Mg-B/Mg-B-O体系的热力学相图,总结分析富氧区杂项MgO的生成机理及其对MgB2薄膜质量和性能的影响,研究分析有氧体系下Mg-B/Mg-B-O热力学相图对MgB2薄膜材料制备生长的指导意义,探讨HPCVD环境下采用原位生长技术制备MgB2超导薄膜时热力学相图的指导作用及相关制备工艺。  相似文献   

15.
报道了关于 MgB2 超导体制备过程中的退火效应和热稳定性的实验研究。把硼片在不同的温度 Mg 气氛中退火不同时间得到 MgB2,制备样品的测量结果显示制备 MgB2 的合适温度范围是 700~1000℃,并且较高的制备温度下只需要相对短的退火时间内就能得到较高转变温度的样品。热稳定性实验的结果显示在没有 Mg 的气氛中 MgB2 在 700℃ 下是稳定的,从 800℃ 开始分解,直到完全失去超导电性。实验还观测到利用 MgB2 混合物薄膜前驱代替硼片制备 MgB2 时,在 600℃ 退火时样品就显示超导电性。  相似文献   

16.
用平均价电子数作为掺杂二硼化镁超导电性的一个判断标准,对二硼化镁超导体及掺杂二硼化镁超导体系平均电子数进行研究.结果表明,二硼化镁体系超导材料的平均价电子数值在Tc-Zv图中集中分布在2.61附近.  相似文献   

17.
Superconductivity at 39 K in magnesium diboride   总被引:88,自引:0,他引:88  
In the light of the tremendous progress that has been made in raising the transition temperature of the copper oxide superconductors (for a review, see ref. 1), it is natural to wonder how high the transition temperature, Tc, can be pushed in other classes of materials. At present, the highest reported values of Tc for non-copper-oxide bulk superconductivity are 33 K in electron-doped Cs(x)Rb(y)C60 (ref. 2), and 30 K in Ba(1-x)K(x)BiO3 (ref. 3). (Hole-doped C60 was recently found to be superconducting with a Tc as high as 52 K, although the nature of the experiment meant that the supercurrents were confined to the surface of the C60 crystal, rather than probing the bulk.) Here we report the discovery of bulk superconductivity in magnesium diboride, MgB2. Magnetization and resistivity measurements establish a transition temperature of 39 K, which we believe to be the highest yet determined for a non-copper-oxide bulk superconductor.  相似文献   

18.
We have investigated the effects of ZrC and ZrB2 doping on the superconducting properties of the powder-in-tube processed MgB2/Fe tapes. Sam- ples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), transport and magnetic measurements. We confirmed the fol- lowing quite different roles of ZrC and ZrB2 in MgB2. ZrC doping was found to decrease the transport critical current density (Jc) at 4.2 K, while the critical temperature (Tc) kept constant. In contrast, the Jc values in magnetic fields were enhanced greatly by the ZrB2 addition, which resulted in a decrease in Tc by only 0.5 K. The reason for different effects of two dopants is also discussed.  相似文献   

19.
The basic magnetic and electronic properties of most binary compounds have been well known for decades. The recent discovery of superconductivity at 39 K in the simple binary ceramic compound magnesium diboride, MgB2, was therefore surprising. Indeed, this material has been known and structurally characterized since the mid 1950s (ref. 2), and is readily available from chemical suppliers (it is commonly used as a starting material for chemical metathesis reactions). Here we show that the addition of electrons to MgB2, through partial substitution of Al for Mg, results in the loss of superconductivity. Associated with the Al substitution is a subtle but distinct structural transition, reflected in the partial collapse of the spacing between boron layers near an Al content of 10 per cent. This indicates that superconducting MgB2 is poised very near a structural instability at slightly higher electron concentrations.  相似文献   

20.
从电子晶格的相互作用,受晶格屏蔽的电子间的相互作用,以及电子自旋的磁力作用等纯电子机制阐明正常超导和高温超导共同的机理,说明MgB2的超导和陶瓷性超导的机理相同,都是由于自由电子少的原因,以此对BCS公式作以修正,并预言Li2O的临界温度高于MgB2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号