首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
用于超级电容器电极材料的球形炭气凝胶   总被引:1,自引:0,他引:1  
以2,4-二羟基苯甲酸(D)和甲醛(F)为原料,碳酸钾(C)为催化剂,采用溶胶-凝胶和乳液聚合的方法合成出球形炭气凝胶。利用SEM、粒径分布和BET测试法对样品的形貌和孔结构进行了分析。以制备的球形炭气凝胶作为超级电容器电极材料,利用恒流充放电研究其电容特性,考察了干燥方式和nD/nC对比电容的影响。结果表明,超临界干燥下,nD/nC为100的样品具有467m2/g的比表面积,孔径主要分布在2.5nm左右,在充放电电流密度为50mA/g时的比电容可达142F/g,该电极具有较好的循环性能和功率特性.  相似文献   

2.
采用溶胶-凝胶法,以间苯二酚(R)和甲醛(F)为原料,无水乙醇作溶剂,六次甲基四胺(HMTA)作催化交联剂,通过常压干燥和高温炭化工艺制备炭气凝胶。并采用磷酸活化法调整炭气凝胶的孔结构,探讨了磷酸活化对炭气凝胶孔结构和电容特性的影响。结果表明,磷酸活化可以有效地增加炭气凝胶的比表面积、总孔容和微孔孔容,但同时中孔孔容和平均孔径有所下降。增加的微孔比表面积主要由部分塌陷的中孔贡献。磷酸活化后炭气凝胶在有机电解质溶液中的比容量显著增加,但在大电流密度充放电时比容量下降较多。  相似文献   

3.
中孔炭的制备及其在超级电容器中的应用   总被引:3,自引:0,他引:3  
以中孔硅分子筛SBA-15为模板,蔗糖为炭源,炭化温度为700℃制备中孔炭材料,利用透射电镜(TEM)和N2吸脱附等温线表征该材料的结构与形貌.以中孔炭材料为超级电容器的电极材料,组装成扣式电容器进行循环伏安、恒流充放电、交流阻抗、漏电流、自放电、循环寿命等电化学测试.结果表明:样品孔结构呈二维六角有序分布:该样品的孔体积为1.88 cm3/g,比表面积为1 394m2/g,具有典型的中孔结构和集中的中孔分布,它的最可几孔径为3.4 nm;制备的中孔炭作电极材料组装的超级电容器有良好的电化学性能,在500 mA/g的充放电电流密度下,循环10 000次的平均比电容高达95 F/g,比容量波动范围仅为-4%~4%.  相似文献   

4.
采用间苯二酚与甲醛为原料,通过反相悬浮聚合,经超临界干燥和炭化成功制备了炭气凝胶微球(CA spheres),并以炭气凝胶微球为超级电容器的电极,采用恒流充放电法、循环伏安法与交流阻抗法测定了电极的储电性能。结果表明,制得的炭气凝胶微球可以作为超级电容器的电极,表现出良好的循环伏安特性,适用于多次充放电和大电流充放电,比电容可高达215 F/g。炭气凝胶微球的储电性能与合成条件、孔结构密切相关,最佳的制备反应条件为间苯二酚与催化剂摩尔比为200,间苯二酚-甲醛中间苯二酚的体积分数为50%及凝胶温度为85℃。  相似文献   

5.
介孔SiO_2@TiO_2粉体具有较大比表面积及有序的孔径分布,在吸附、药物控释以及催化剂载体等领域应用前景广阔。以正硅酸乙酯为硅源、钛酸正丁酯为钛源、十六烷基三甲基溴化铵为模板剂,结合并改进溶胶凝胶法和水解沉淀法,设计了一种原位制备介孔SiO_2@TiO_2粉体的方法。通过对不同酸碱条件下所得样品进行结构与性能分析表明,碱性条件有利于介孔SiO_2@TiO_2粉体的制备,在pH值为3和5时,其孔径分布不集中,比表面积在100m~2/g以下,当p H值为7~11时,其比表面积为150~200 m~2/g,孔体积为0.213~0.399 m L/g,孔径集中分布在5 nm左右。相较于传统的溶胶凝胶法,原位法制备的介孔SiO_2@TiO_2粉体比表面积和孔体积均有增大,孔径减小但分布集中,使其更适合作为催化剂载体。  相似文献   

6.
炭气凝胶微球的制备及在锂离子电池负极材料中的应用   总被引:4,自引:0,他引:4  
以间苯二酚和甲醛为原料,在催化剂和表面活性剂的作用下经溶胶-凝胶、超临界干燥、炭化等过程合成一种新型的炭气凝胶微球。采 用扫描电镜(SEM)、X-射线衍射(XRD)、低温氮吸附(BET)和充放电测试等表征了炭气凝胶微球微观形貌、结构和电化学性能。结果表明:炭气 凝胶微球具有纳米网络结构(孔径集中分布在3.5nm左右),微球直径≤40μm,比表面积为555m2/g。电化学性能表现出很大的首次不可逆容量 损失,这主要与材料大的比表面积有关。但在首次循环后,具有良好的循环性能,循环20次后可逆充电容量为281mAh/g,循环效率达到100% 。  相似文献   

7.
二氧化硅膜材料制备方案的优化   总被引:4,自引:0,他引:4  
在采用溶胶凝胶法制备二氧化硅膜材料时,采取了添加有机物和控制水的加入方式等措施,制得最可几孔径为0.56nm、平均孔径为0.61nm、孔体积为0.164cm3/g 的二氧化硅凝胶材料.与已有的二氧化硅凝胶材料相比,这种材料具有孔径小、孔分布范围窄、孔体积大等特点.实验结果表明,溶剂的介电性质是影响凝胶性质的一个重要因素.改进制备方案后制得的溶胶具有良好的涂膜性能.  相似文献   

8.
采用溶胶一凝胶法,以间苯二酚(R)和糠醛(F)为原料,环六次甲基四胺(HMTA)作催化交联剂,通过常压干燥和高温碳化、活化等工艺制备分散性良好的炭气凝胶.研究溶剂的pH值和活化温度等工艺参数对炭气凝胶的比表面积和用作超级电容器电极的比电容的影响.确立具有最大比电容时炭气凝胶的最佳制备工艺条件.结果表明,当pH-9.0,活化温度为950℃时获得的炭气凝胶具有最大的比表面和.比电容.  相似文献   

9.
<正>石墨烯/炭气凝胶的制备及其结构与性能研究炭气凝胶是具有独特三维网络结构的轻质纳米中孔炭材料,适用于制备超级电容器的电极,但通常采用苯二酚(R)-甲醛(F)为原料制备的炭气凝胶,其微孔含量低,比表面积和电容量不高,限制了它在超级电容器中的应用。若采用石墨烯(GO)与炭气凝胶复合,可在一定程度上有效调控气凝胶的比表面积,但要进一步提高炭气凝胶的比电容,仍存在较大难度。湖南大学材料科学与  相似文献   

10.
通过以极慢的速率滴加氧化剂水溶液方式,构建了受限的油水反应界面,在无模板条件下制备了多孔聚苯胺,并研究了产物的结构和用作超级电容器电极材料的电化学性能.结果表明:产物为银耳状多孔结构,富含小于10 nm的中介孔.在电流密度为1 A/g时,充放电时间近似对称,比电容高达441 F/g,经2 000次充放电循环后,比电容损失率为27.3%,该聚苯胺表现出良好的电化学性能.  相似文献   

11.
采用原位聚合法,以正硅酸四乙酯(TEOS)为原料、甲基三乙氧基硅烷(MTES)为疏水改性剂,活性炭为载体,制备疏水SiO2气凝胶修饰活性炭复合材料。采用接触角分析仪、N2吸附法、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)对疏水SiO2气凝胶修饰活性炭复合材料的表面特性和结构进行表征。结果表明:所制备的疏水SiO2气凝胶修饰活性炭复合材料的接触角为156°、比表面积为759.2 m2/g、孔体积为4.38 cm3/g,最可几孔径是32nm,孔径主要分布为1~50 nm,疏水SiO2气凝胶均匀地分散于活性炭表面。  相似文献   

12.
环境气压干燥新工艺快速合成SiO2气凝胶研究   总被引:7,自引:0,他引:7  
以廉价的水玻璃为硅源,用乙醇(EtOH)/三甲基氯硅烷(TMCS)/庚烷混合溶液浸泡水凝胺,使对水凝胶的溶剂交换和表面改性在一步完成,在环境干燥条件下合成了SiO2气凝肢.所合成的SiO2气凝肢为轻质透明的块状固体,密度为0.128~0.165g/cm^3,孔隙率92.4%~94.2%.利用FT—IR、SEM、TEM和BET吸附对气凝肢的微观结构和形貌进行了研究,结果表明,气凝胶为纳米介孔结构,粒子直径和孔径分布均匀,断面呈现明显的蜂窝状结构,孔径13nm左右,比表面积约618m^2/g,表面带有较多的Si—CH3基团.  相似文献   

13.
以热固性酚醛树脂为原料,采用CO2物理活化法制备双电层电容器,用高比表面积活性炭.由氮气吸附法测定活性炭的比表面积和孔结构,采用循环伏安、交流阻抗和恒电流充放电考察其在3000/KOH水溶液中的电容特性.结果表明,随着活化时间的延长,所得活性炭收率下降,比表面积、总孔孔容和质量比电容则不断增加;具有高比表面积和宽孔径分布的试样APF957质量比电容值最高,电流密度由50 mA/g提高到1000 mA/g时,其放电比电容由211.6 F/g降低到196.5 F/g,容量保持率达到9300/,显示出良好的功率特性.  相似文献   

14.
以工业水玻璃为硅源,采用溶胶-凝胶和共沸蒸馏的方法在常压下制备SiO2气凝胶,研究制备条件对SiO2气凝胶性能的影响.结果表明,当溶液体系的pH值为4.5,添加2 mL甲酰胺作为干燥控制化学添加剂(DCCA),并以正丁醇与凝胶中的水为共沸蒸发介质时,所制备的SiO2气凝胶具有典型的气凝胶结构特征,经分析SiO2气凝胶的...  相似文献   

15.
炭凝胶的制备及其电化学电容性能   总被引:4,自引:1,他引:4  
采用新型聚合物混合法,在合成炭前驱体聚合物的单体溶液中混入热不稳定的聚乙二醇,制得了比表面积达710m2/g,平均孔径为2.8nm的新型中孔炭干凝胶PEG-RF炭.X射线衍射、热重分析及N2等温吸脱附测试结果表明,炭前驱体的微相分离结构和热稳定性较差的聚乙二醇的存在导致了炭干凝胶中孔特征孔隙结构的形成.在30%H2SO溶液中,对PEG-RF炭和比表面积迭1720 m2/g的微孔T82型活性炭的电化学电容性能进行了对比研究。研究结果表明:当放电比电流为0.2A/g时,PEG-RF炭和T82型活性炭的比容量分别为36F/g和48F/g;当放电比电流增至1A/g时,PEG-RF炭和T82型的比容量分别为105F/g和94F/g;PEG-RF炭具有比T82型活性发更优异的电化学电容性能,两者孔隙结构的差异导致了炭凝胶电化学电容性能的差异.  相似文献   

16.
采用超临界干燥(SCD)法和以溶剂置换、表面改性为基础的常压干燥(APD)法分别制得二氧化硅气凝胶.采用N2低温物理吸附脱附法、红外光谱(FT-IR)、X射线衍射(XRD)实验和扫描电子显微镜(SEM)等手段对两种方法制备的气凝胶的理化性能进行了表征.结果表明:SCD法和APD法制备的二氧化硅气凝胶的比表面积分别为1 016和846 m2/g,最可几孔径分别位于孔径大小14.5和11.5 nm处.SCD法制备的二氧化硅气凝胶的孔径分布范围和较大孔的数量均较APD法制备的要宽和多.而以两种方法制备的二氧化硅气凝胶为载体,硝酸镍为镍源,采用浸渍法制备的二氧化硅气凝胶负载镍催化剂中,镍均以极微小的颗粒形式高度分散于二氧化硅气凝胶载体上.对甲烷部分氧化(POM)制合成气反应,用两种方法(SCD和APD)制备的二氧化硅气凝胶载体为基础的负载镍催化剂对产物一氧化碳和氢气的选择性相差不大,但甲烷转化率则呈现明显的差异.  相似文献   

17.
 为制备一种新型的木质纤维素气凝胶,采用化学预处理、溶解再生与冷冻干燥相结合的方法,对废弃的麦秸杆进行提纯、溶解、置换和干燥,并采用绿色、无毒、低廉的氢氧化钠/聚乙二醇溶液作为纤维素溶剂。采用扫描电镜(SEM)、BET 比表面积分析、X 射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和热重分析仪(TGA),对制备的新型木质纤维素气凝胶的微观形貌、比表面积与孔径分布、晶型结构、化学结构及热稳定性进行表征。结果表明,制备的新型木质纤维素气凝胶具有连续、层叠的三维网状结构,比表面积为99.17 m2/g,总孔容为0.45 cm3/g;纤维素气凝胶的晶型由纤维素I 型转变为纤维素Ⅱ 型,结晶度为72.3%,相对于原料提高了23.4%,热稳定性也略微升高;并利用三甲基氯硅烷(TMCS)进行疏水改性,制备出了具有疏水性能的纤维素气凝胶。提供了一种新的制备木质纤维素气凝胶的有效溶剂,且具有高吸附性能、高承重能力、高结晶度的纤维素气凝胶是一种具有较大应用潜力的新型功能材料。  相似文献   

18.
采用水热合成和煅烧制备氧化钴/碳(Co3O4/C)复合材料,通过SEM、XRD、N2吸附实验等对该材料进行表征.制备的Co3O4/C复合材料为5μm大小,孔径约为30nm的多孔球形结构.在6mol/L的氢氧化钾溶液中进行电化学测试.结果表明,Co3O4/C复合材料具有良好的电容性能.在电流密度为1A/g时,比电容为143F/g.此外,Co3O4/C复合材料还表现出良好的循环稳定性,在1A/g的电流密度下,充放电循环1000次后,比电容保持率为77.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号