首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N E Miller  A La Ville  D Crook 《Nature》1985,314(6006):109-111
Mammalian cells obtain cholesterol for membrane synthesis mostly via the receptor-mediated endocytosis of low-density lipoprotein (LDL). Macrophages and vascular endothelium additionally have receptors that recognize certain modified forms of LDL (for example, acetyl-LDL). The process by which cholesterol returns from peripheral cells to hepatocytes (reverse cholesterol transport) has not been established; although tissue culture studies have favoured high-density lipoprotein (HDL) as the principal vehicle, the in vivo evidence for this is meagre. When cholesterol-loaded macrophages are incubated in medium containing plasma, cholesterol moves from the cells to HDL and is then esterified by lecithin/cholesterol acyltransferase. The accumulation of cholesteryl esters in the particles increases their size and decreases their density; enrichment with apoprotein E (apo E) also occurs, producing a decrease in electrophoretic mobility. We now report that similar changes occur in the circulating HDL of rabbits, when their peripheral tissues are loaded with cholesterol by intravenous (i.v.) injection of acetylated or native human LDL. This result suggests that HDL is involved in reverse cholesterol transport in vivo.  相似文献   

2.
The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein   总被引:38,自引:0,他引:38  
U Beisiegel  W Weber  G Ihrke  J Herz  K K Stanley 《Nature》1989,341(6238):162-164
The low-density-lipoprotein (LDL) receptor is a cell-surface protein that plays an important part in the metabolism of cholesterol by mediating the uptake of LDL from plasma into cells. Although LDL particles bind to the LDL receptor through their apolipoprotein B (apo B) and apolipoprotein E (apo E) moieties, other apo E-containing particles, like chylomicron remnants, are not dependent on the LDL receptor for uptake into cells. Chylomicrons formed in the intestinal mucosa during the absorption of the products of digestion, are processed by the peripheral circulation by lipoprotein lipase, which catalyses the breakdown of triglycerides in chylomicrons to free fatty acids and glycerol. The resulting chylomicron remnants, which are cholesterol-rich lipoproteins, are subsequently taken up in the liver. A second distinct protein that binds to apo E-containing lipoproteins, but not to LDL, has been proposed to be the receptor mediating the clearance of chylomicron remnants from the plasma. This protein has a relative molecular mass (Mr) of 56,000 (56K). More recent studies have failed, however, to establish whether this protein is a cell-surface receptor. Here we describe crosslinking experiments in which apo E liposomes were found to bind specifically to the cell surface of hepG2 cells and to human liver membranes. The size and immunological cross-reactivity of the protein to which the liposomes bound was indistinguishable from that of the recently cloned and sequenced LDL-receptor-related protein, LRP. We therefore conclude that the LRP might function as an apo E receptor.  相似文献   

3.
A sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP). It is thought that the mtPTP is a protein complex formed by the voltage-dependent anion channel, members of the pro- and anti-apoptotic BAX-BCL2 protein family, cyclophilin D, and the adenine nucleotide (ADP/ATP) translocators (ANTs). The latter exchange mitochondrial ATP for cytosolic ADP and have been implicated in cell death. To investigate the role of the ANTs in the mtPTP, we genetically inactivated the two isoforms of ANT in mouse liver and analysed mtPTP activation in isolated mitochondria and the induction of cell death in hepatocytes. Mitochondria lacking ANT could still be induced to undergo permeability transition, resulting in release of cytochrome c. However, more Ca2+ than usual was required to activate the mtPTP, and the pore could no longer be regulated by ANT ligands. Moreover, hepatocytes without ANT remained competent to respond to various initiators of cell death. Therefore, ANTs are non-essential structural components of the mtPTP, although they do contribute to its regulation.  相似文献   

4.
A new cationic conjugated polymer was designed and synthesized to optically discriminate coenzyme A(CoA) among structurally similar biomolecules, ATP, ADP and AMP. The analyte-induced aggregation of the conjugated polymer by π-stacking between their main chains leads to the fluorescence quenching. Except for the similar adenosine and phosphate moieties as those in ATP, ADP and AMP, the CoA molecule also includes a long side chain that is favorable for hydrophobic interactions. Thus, CoA can form a complex with oppositely charged conjugated polymer by cooperative electrostatic and hydrophobic interactions, whereas ATP, ADP and AMP form the complexes with oppositely charged conjugated polymer mainly by electrostatic interactions. The increase of the ion strength of the assay solution screens the electrostatic attractions, and the remaining hydrophobic interactions dominate the formation of PFP-PTF/CoA complex. At this case, the quenching efficiency of PFP-PTF by CoA is much higher than that by ATP, ADP and AMP, which impart the PFP-PTF to sense CoA from these interferencing species.  相似文献   

5.
ATP, the principal energy currency of the cell, fuels most biosynthetic reactions in the cytoplasm by its hydrolysis into ADP and inorganic phosphate. Because resynthesis of ATP occurs in the mitochondrial matrix, ATP is exported into the cytoplasm while ADP is imported into the matrix. The exchange is accomplished by a single protein, the ADP/ATP carrier. Here we have solved the bovine carrier structure at a resolution of 2.2 A by X-ray crystallography in complex with an inhibitor, carboxyatractyloside. Six alpha-helices form a compact transmembrane domain, which, at the surface towards the space between inner and outer mitochondrial membranes, reveals a deep depression. At its bottom, a hexapeptide carrying the signature of nucleotide carriers (RRRMMM) is located. Our structure, together with earlier biochemical results, suggests that transport substrates bind to the bottom of the cavity and that translocation results from a transient transition from a 'pit' to a 'channel' conformation.  相似文献   

6.
Itoh H  Takahashi A  Adachi K  Noji H  Yasuda R  Yoshida M  Kinosita K 《Nature》2004,427(6973):465-468
ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its gamma-subunit rotates against the surrounding alpha3beta3 subunits, hydrolysing ATP in three separate catalytic sites on the beta-subunits. It is widely believed that reverse rotation of the gamma-subunit, driven by proton flow through the associated F(o) portion of ATP synthase, leads to ATP synthesis in biological systems. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the gamma-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase-luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.  相似文献   

7.
目的:构建肝细胞靶向性Asor-PLL-DNA复合物。方法:将携带外源基因的质粒与脱唾液酸糖蛋白结合在一起,形成一种可溶性的蛋白-核酸复合物。结果:该复合物能通过脱唾液酸糖蛋白受体介导的内吞作用,以非病毒感染的方式,将外源基因导入肝细胞并得以表达。结论:和传统的重组病毒介导的基因转移方式相比,该复合物具有更高的靶向性、安全性,该系统的建立为以肝细胞为靶组织的外源基因介导的肝脏相关疾病的基因治疗提供实验基础。  相似文献   

8.
Cloning and sequencing of human cholesteryl ester transfer protein cDNA   总被引:10,自引:0,他引:10  
D Drayna  A S Jarnagin  J McLean  W Henzel  W Kohr  C Fielding  R Lawn 《Nature》1987,327(6123):632-634
The transfer of insoluble cholesteryl esters among lipoprotein particles is a vital step in normal cholesterol homeostasis and may be involved in the development of atherosclerosis. Extrahepatic tissues lack the enzymes required for the degradation of sterols to the excretable form of bile acids. Cholesterol synthesized in these tissues in excess of that needed for the synthesis of cell membranes or steroid hormones must accordingly be returned through the plasma to the liver for catabolism. The series of reactions involved has been termed reverse cholesterol transport. Catalysed steps of this pathway are believed to include an efflux from peripheral cells, which generates a diffusion gradient between these membranes and extracellular fluid; esterification of this cholesterol by lecithin-cholesterol acyltransferase (LCAT) (phosphatidylcholine-sterol acyltransferase) acting on species of high-density lipoproteins; transfer of the cholesteryl esters formed (largely to low- and very low-density lipoproteins) (LDL and VLDL) by a cholesteryl ester transfer protein (CETP); and removal of these lipoproteins, together with their cholesteryl ester content, by the liver through receptor-mediated and nonspecific endocytosis. Of these steps, the CETP reaction is the least characterized. Several laboratories have reported the purification from human plasma of proteins active on cholesteryl ester transfer between lipoprotein particles and possibly between cells and plasma. However, the reported relative molecular mass (Mr), abundance and specificity of the purified activities have differed considerably. We have recently described the preparation of a highly active CETP of Mr 74,000 purified about 100,000-fold from human plasma, which may represent the functional component of earlier preparations. Using a partial amino-acid sequence from this purified protein, CETP complementary DNA derived from human liver DNA has been cloned and sequenced and the cloned DNA used to detect CETP messenger RNA in a number of human tissues.  相似文献   

9.
J H Kaplan  R J Hollis 《Nature》1980,288(5791):587-589
Coupled active transport of Na+ and K+ across cellular plasma membranes is mediated by (Na+ + K+)-stimulated Mg2+-dependent ATPase. Active cation transport by this Na pump involves a cyclic Na-dependent phosphorylation of the enzyme by intracellular ATP and hydrolytic dephosphorylation of the phosphoenzyme, stimulated by K+ (ref. 1). In human red blood cells, skeletal muscle and squid axons, replacement of extracellular K by Na results in a ouabain-sensitive efflux of Na coupled to an influx of extracellular Na. There is apparently no net Na movement nor net hydrolysis of ATP. The rate of Na:Na exchange is stimulated by increased levels of ADP and exchange transport is not observed in cells totally depleted of intracellular ATP. These characteristics suggest that the biochemical mechanism underlying the Na exchange mode of the Na pump involves phosphorylation of the enzyme by ATP (which requires intracellular Na) followed by its dephosphorylation by ADP. Such a reaction has been observed in partially purified (Na+ + K+) ATPase from a variety of sources and its dependence on Na concentration has been described (although not previously for the red cell enzyme). In the present work, intracellular ATP:ADP exchange reaction was initiated by photoreleased ATP following brief irradiation at 350 nm of ghosts containing caged-ATP. The ouabain-sensitive component of the ensuing ATP:ADP exchange reaction shows a biphasic response to extracellular Na. External Na in the range 0--10 mM has an inhibitory effect whilst increasing concentrations beyond this range stimulate the rate of exchange in a roughly linear fashion up to 100 mM Na. These results represent the first direct demonstration of the sidedness of the effects of Na on this partial sequence in the overall enzyme cycle and bear a qualitative resemblance to the Na effects on the Na-ATPase which occur in the absence of intracellular ADP in human red blood cells.  相似文献   

10.
目的通过检测血脂在冠状动脉病变中的变化,了解血脂分析预测冠状动脉病变的临 床意义。方法设置病变组和对照组,检测胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白(RDL)、载脂 蛋白AI(APOAI)、载脂蛋白B(APOB)、脂蛋白a[Lp(a)]。结果病变组APOAI、APOB与对照组比较 具有高度显著性差异(P《0.001);TC、TG、HDL、Lp(a)次之(P<0.01);各项指标检测异常比例以 APOAI、APOB、LP(a)最高(69.5%、72.O%、65.9%)。结论血脂6项指标对预测冠状动脉病变均有 临床意义,建议这6项指标均应成为冠状动脉病变预测的常规检测项目。  相似文献   

11.
Endocytosis is a key cellular process, encompassing different entry routes and endocytic compartments. To what extent endocytosis is subjected to high-order regulation by the cellular signalling machinery remains unclear. Using high-throughput RNA interference and automated image analysis, we explored the function of human kinases in two principal types of endocytosis: clathrin- and caveolae/raft-mediated endocytosis. We monitored this through infection of vesicular stomatitis virus, simian virus 40 and transferrin trafficking, and also through cell proliferation and apoptosis assays. Here we show that a high number of kinases are involved in endocytosis, and that each endocytic route is regulated by a specific kinase subset. Notably, one group of kinases exerted opposite effects on the two endocytic routes, suggesting coordinate regulation. Our analysis demonstrates that signalling functions such as those controlling cell adhesion, growth and proliferation, are built into the machinery of endocytosis to a much higher degree than previously recognized.  相似文献   

12.
Okamoto H  Yonemori F  Wakitani K  Minowa T  Maeda K  Shinkai H 《Nature》2000,406(6792):203-207
Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL). This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic. On the other hand, CETP could also be anti-atherogenic, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver). Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.  相似文献   

13.
Halestrap AP 《Nature》2004,430(7003):1 p following 983
The ADP/ATP translocator (or adenine nucleotide translocase; ANT) is thought to play a dual role: in the transport of ADP and ATP across the mitochondrial inner membrane and in the formation of the mitochondrial permeability-transition pore (mtPTP), a nonspecific pore that is an important mediator of apoptosis (programmed cell death). However, Kokoszka et al. have shown that mitochondria from livers of 'ANT-knockout' mice, in which the ANT has been genetically inactivated, still possess mtPTP activity. From this, the authors conclude that the ANT is a non-essential component of the mtPTP that may be dispensable for mtPTP-associated cell death. These results, which contradict previous evidence and cast doubt on a widely accepted model for the mtPTP (ref. 1), warrant scrutiny and call for a fundamental reappraisal of the role of the ANT in liver metabolism.  相似文献   

14.
Sakamoto T  Webb MR  Forgacs E  White HD  Sellers JR 《Nature》2008,455(7209):128-132
Myosin Va transports intracellular cargoes along actin filaments in cells. This processive, two-headed motor takes multiple 36-nm steps in which the two heads swing forward alternately towards the barbed end of actin driven by ATP hydrolysis. The ability of myosin Va to move processively is a function of its long lever arm, the high duty ratio of its kinetic cycle and the gating of the kinetics between the two heads such that ADP release from the lead head is greatly retarded. Mechanical studies at the multiple- and the single-molecule level suggest that there is tight coupling (that is, one ATP is hydrolysed per power stroke), but this has not been directly demonstrated. We therefore investigated the coordination between the ATPase mechanism of the two heads of myosin Va and directly visualized the binding and dissociation of single fluorescently labelled nucleotide molecules, while simultaneously observing the stepping motion of the fluorescently labelled myosin Va as it moved along an actin filament. Here we show that preferential ADP dissociation from the trail head of mouse myosin Va is followed by ATP binding and a synchronous 36-nm step. Even at low ATP concentrations, the myosin Va molecule retained at least one nucleotide (ADP in the lead head position) when moving. Thus, we directly demonstrate tight coupling between myosin Va movement and the binding and dissociation of nucleotide by simultaneously imaging with near nanometre precision.  相似文献   

15.
田间除草剂乙草胺施用之后非常容易进入地表水和地下水,河流溪水中乙草胺浓度可达纳摩尔水平,从而对水生生物产生长期影响.因职业关系而产生的皮肤暴露和吸入,可导致人血液乙草胺浓度达到微摩尔水平.对乙草胺体内动力学的研究,发现肝脏是乙草胺毒理作用的主要靶器官.已知在肝脏细胞多种生理功能中,钙离子发挥重要作用.本文研究在新鲜分离的大鼠肝脏细胞,乙草胺对肾上腺素能受体所介导胞浆钙振荡的可能影响.实验发现低浓度乙草胺(1、10μmol·L-1)对苯丙肾上腺素所诱导钙振荡没有影响,但是高浓度(50、100、200μmol·L-1)乙草胺在有些肝脏细胞可逆性抑制苯丙肾上腺素所诱导的胞浆钙振荡.在苯丙肾上腺素2次串联刺激之间短暂加入乙草胺(1、10、100μmol·L-1),乙草胺对肝脏细胞基础钙浓度没有影响,也不影响第2次苯丙肾上腺素刺激所引发胞浆钙振荡.细胞免疫化学研究发现在新鲜分离的大鼠肝脏不同细胞,α1肾上腺素能受体密度存在明显差异.对固定的大鼠肝脏切片进行组织免疫化学检测,发现α1肾上腺素能受体在肝脏小叶的密度梯度分布:α1肾上腺...  相似文献   

16.
Lau WC  Rubinstein JL 《Nature》2012,481(7380):214-218
Ion-translocating rotary ATPases serve either as ATP synthases, using energy from a transmembrane ion motive force to create the cell's supply of ATP, or as transmembrane ion pumps that are powered by ATP hydrolysis. The members of this family of enzymes each contain two rotary motors: one that couples ion translocation to rotation and one that couples rotation to ATP synthesis or hydrolysis. During ATP synthesis, ion translocation through the membrane-bound region of the complex causes rotation of a central rotor that drives conformational changes and ATP synthesis in the catalytic region of the complex. There are no structural models available for the intact membrane region of any ion-translocating rotary ATPase. Here we present a 9.7?? resolution map of the H(+)-driven ATP synthase from Thermus thermophilus obtained by electron cryomicroscopy of single particles in ice. The 600-kilodalton complex has an overall subunit composition of A(3)B(3)CDE(2)FG(2)IL(12). The membrane-bound motor consists of a ring of L subunits and the carboxy-terminal region of subunit I, which are equivalent to the c and a subunits of most other rotary ATPases, respectively. The map shows that the ring contains 12 L subunits and that the I subunit has eight transmembrane helices. The L(12) ring and I subunit have a surprisingly small contact area in the middle of the membrane, with helices from the I subunit making contacts with two different L subunits. The transmembrane helices of subunit I form bundles that could serve as half-channels across the membrane, with the first half-channel conducting protons from the periplasm to the L(12) ring and the second half-channel conducting protons from the L(12) ring to the cytoplasm. This structure therefore suggests the mechanism by which a transmembrane proton motive force is converted to rotation in rotary ATPases.  相似文献   

17.
Ligand-dependent downregulation of tyrosine kinase receptors is a critical step for modulating their activity. Upon ligand binding, hepatocyte growth factor (HGF) receptor (Met) is polyubiquitinated and degraded; however, the mechanisms underlying HGF receptor endocytosis are not yet known. Here we demonstrate that a complex involving endophilins, CIN85 and Cbl controls this process. Endophilins are regulatory components of clathrin-coated vesicle formation. Through their acyl-transferase activity they are thought to modify the membrane phospholipids and induce negative curvature and invagination of the plasma membrane during the early steps of endocytosis. Furthermore, by means of their Src-homology 3 domains, endophilins are able to bind CIN85, a recently identified protein that interacts with the Cbl proto-oncogene. Cbl, in turn, binds and ubiquitinates activated HGF receptor, and by recruiting the endophilin-CIN85 complex, it regulates receptor internalization. Inhibition of complex formation is sufficient to block HGF receptor internalization and to enhance HGF-induced signal transduction and biological responses. These data provide further evidence of a relationship between receptor-mediated signalling and endocytosis, and disclose a novel functional role for Cbl in HGF receptor signalling.  相似文献   

18.
19.
Atomic structure of the actin:DNase I complex   总被引:98,自引:0,他引:98  
W Kabsch  H G Mannherz  D Suck  E F Pai  K C Holmes 《Nature》1990,347(6288):37-44
The atomic models of the complex between rabbit skeletal muscle actin and bovine pancreatic deoxyribonuclease I both in the ATP and ADP forms have been determined by X-ray analysis at an effective resolution of 2.8 A and 3A, respectively. The two structures are very similar. The actin molecule consists of two domains which can be further subdivided into two subdomains. ADP or ATP is located in the cleft between the domains with a calcium ion bound to the beta- or beta- and gamma-phosphates, respectively. The motif of a five-stranded beta sheet consisting of a beta meander and a right handed beta alpha beta unit appears in each domain suggesting that gene duplication might have occurred. These sheets have the same topology as that found in hexokinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号