首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
介绍了应力波法在输油管道泄漏检测系统中的应用。在不法分子凿击输油管道的过程中或输油管道由于自然原因突然发生泄漏时,产生的应力波会沿着管道向两端传播,利用管道两端的传感器采集应力波信号,并进行小波去噪,然后根据应力波到达两个传感器的时间差对冲击激励点进行定位。实验测试与实际运行结果表明,本检测系统定位平均误差小于0.22m,判断准确率高达90%以上,能够较准确检测输油管道的泄源点。  相似文献   

2.
强环境噪声下地下管道泄漏检测   总被引:9,自引:1,他引:9  
探讨对应力波进行功率分析发现管道泄漏的有效性,提出强环境噪声下检测地下管道泄漏的自适应滤波方法。  相似文献   

3.
弹性介质中充液管道的波衰减特性   总被引:5,自引:0,他引:5  
从壳体基本运动方程出发,导出了弹性介质中的充液管道在轴对称运动下声振耦合系统的频散方程.利用数值方法得到了频散方程的完全解,对弹性介质中充液钢质管道和PVC塑料管道波传播衰减特性进行了研究.研究结果对利用声学的方法进行埋地供水管道泄漏检测有一定的参考意义。  相似文献   

4.
高琳  曹建国 《科学技术与工程》2021,21(31):13203-13210
管道泄漏常常造成环境污染、财产损失和人员伤亡,由于其发生的隐蔽性,对管道泄漏的及时识别与准确定位具有重要的现实意义,但在检测中存在两个问题目前并没有得到很好地解决,即管道泄漏声发射应力波的频散问题、管网泄漏的检测成本(时间成本、传感器数目等)和检测精度之间的矛盾问题。本文围绕这两个问题,分别重点介绍了“管道泄漏模态声发射检测(连续型、突发型)”以及“管网泄漏检测(泄漏源定段、传感器布置、算法)”的国内外研究现状,梳理了众多文献间的区别和联系。最后分析了当前研究的不足,并对这两个问题的未来研究方向做出了展望。  相似文献   

5.
许延军 《甘肃科技纵横》2010,39(3):42-43,46
本论述针对油田管道泄漏检测的方法进行了简单介绍,重点对延长油田泄露检测应用的瞬态负压波法的原理、泄露判断及波率确定等方面进行阐述,并对管道泄漏检测定位系统在延长管道的应用案例做了详细介绍。  相似文献   

6.
小波分析在管道泄漏信号识别中的应用   总被引:13,自引:0,他引:13  
利用多尺度小波变换,把管道泄漏产生的负压波信号作为瞬态信号,来识别管道的局部泄漏特征。以光滑函数的一阶导数作为小波母函数,研究了管道泄漏特征信号拐点区间的敏感性,突出小波变换系数的局部极值性。分析表明,检测信号的小波变换系数极值的奇异性准确地反映了管道检测信号的泄漏特征,并且从局部描述了管道泄漏信号的瞬态正则性。对各级尺度系数进行了S形曲线拟合,此曲线能够完整地描述管道泄漏瞬变特征,其拐点区间描述了管道发生泄漏时的瞬变过程。  相似文献   

7.
针对气体管道可能发生的泄漏工况,基于气体管道瞬变流动模型,结合泄漏边界条件,计算得到泄漏后管道任一位置压力流量随时间的变化规律,并通过模型法实时计算泄漏位置。结果表明:未泄漏稳态计算时,公式法和模型法的计算结果基本相同。管道泄漏后会产生负压波,导致全线压力降低,泄漏点上游流量增大,下游流量减小。压力波先后传播到管道首末端,在传播到管道首末端时会发生反射,随着压力波反射次数的增加,管内压力和流量会逐渐达到稳定状态。气体管道发生泄漏后,压力波向上下游传播,在各点产生的压力波幅呈指数规律衰减。利用管道泄漏后稳定状态时的起终点压力和流量结果计算得到的定位结果与真实值更接近。  相似文献   

8.
小波去噪和奇异性分析方法在输油管道泄漏检测中的应用   总被引:1,自引:0,他引:1  
输油管道中存在的噪声影响了管道泄漏事故的判决,利用瞬态压力波定位泄漏点的关键是准确地确定瞬态压力波传播到管道始末两端的时间差,通过小波阈值去噪和信号奇异点分析方法,可以有效降低管道工况噪声对泄漏信号的干扰,提高瞬态压力波定位的精度.  相似文献   

9.
信息缺失条件下管道泄漏信号识别研究   总被引:11,自引:0,他引:11  
在管道泄漏诊断过程中,负压波信息缺失会导致误判或漏判,采用改进奇异值降噪技术对负压波信号进行预处理,以提高定性评判泄漏的准确性。介绍了奇异值降噪技术的基本原理及其改进方法,并利用信号互相关技术对泄漏点位置进行了定量计算,实现了对液体输送管线的泄漏故障诊断。对室内液体管道在泄漏诊断过程中负压波特征明显和模糊情况下的奇异值降噪结果进行了对比。结果表明,相关分析方法对信息缺失条件下负压波信号拐点识别的准确率较高。该方法能突出强噪声背景下的负压波信号,并且使泄漏点的定位精度提高到1.52%。该研究结果也可用于液体管线小泄漏的诊断分析。  相似文献   

10.
针对气体管道可能发生的泄漏工况,基于气体管道瞬变流动模型,结合泄漏边界条件,采用数值解法仿真得到泄漏后管道任一位置压力流量随时间的变化,并通过模型法对泄漏位置实时计算。结果表明:未泄漏稳态计算时,公式法和模型法的计算结果基本相同。管道泄漏后会产生负压波,导致全线压力降低,泄漏点上游流量增大,下游流量减小。压力波先后传播到管道首末端,在传播到管道首末端时会发生反射,随着压力波反射次数的增加,管内压力和流量会逐渐达到稳定状态。气体管道发生泄漏后,压力波向上下游传播,在各点产生的压力波幅呈指数规律衰减。利用管道泄漏后稳定状态时的起终点压力和流量结果计算得到的定位结果与真实值更接近。  相似文献   

11.
波流联合作用下海底管跨疲劳失效的分析   总被引:1,自引:0,他引:1  
针对由涡激振动引发的海底管跨疲劳失效,提出管跨非线性涡激振动失效可靠性分析方法,引入波浪和海流对管跨的联合作用以及管跨所受轴力,并考虑管跨海底土壤支撑端的实际工况,建立了管跨段的垂向非线性振动方程及其边界条件.通过模态分析,求得振动方程的固有振型,并以此为基础,推导和建立方程解的关于时间域的微分方程组,运用时频分析方法,由波浪谱推得的波、流力谱作为振动方程的输入谱,计算得到相应的输出谱,进而确定位移和应变等各种响应随机过程的概率分布,结合可靠性理论确定管跨的疲劳失效概率.最后,通过实例的计算与分析,确定几个重要参数对管跨疲劳失效的影响程度.  相似文献   

12.
输气管道泄漏音波在管内传播过程中发生衰减,在安装音波传感器前必须明确管内音波信号的传播距离。综合考虑介质黏滞吸收和热传导作用及特殊管件(弯管、分支及变径管)的吸收作用,建立泄漏音波在管内传播模型。利用改进的小波分析法对泄漏音波信号时频域特征进行分析,模拟分析不同特殊管件对音波传播的影响,并利用高压泄漏试验装置对建立的传播模型进行验证。结果表明:泄漏音波在管内以平面波形式传播,泄漏信号幅值能量占优的频带主要集中在0~0.366 Hz及2.93~46.88 Hz内,直管和弯管对音波衰减影响较小,只有分支和变径(变径流量计、阀门)对音波传播影响较大;得到的拟合音波吸收系数与理论吸收系数吻合较好,模型计算结果较为准确,可提高音波泄漏检测的准确性。  相似文献   

13.
输油管线漏失动态监测系统设计及实现   总被引:3,自引:0,他引:3  
输油管线漏失动态监测系统通过在输油管线两端实时监测管线内压力场的变化 ,根据水击波在管线内的传播特性 ,分析管线的运行状态 ,判断是否有漏失发生并报警 .介绍了基于水击波原理的输油管线漏失动态监测系统的工作原理、功能模块、硬件组成和软件工作流程 .现场试验证明该系统工作可靠 ,具有较高的实用价值  相似文献   

14.
Wave propagation problems in orthotropic media are studied jointly by analytical and experimental methods in this paper. Dynamic orthotropic photoelasticity, which studies experimentally the dynamic behavior of orthotropic materials on a macroscopic scale by employing orthotropic birefringent materials, is established. A dynamic stress-optic law for orthotropic birefringent materials is postulated and practical methods of calibrating dynamic mechanical constants and dynamic stress-fringe values are proposed. Meanwhile, time domain boundary element method (BEM) for wave propagation in orthotropic media, is also presented based on the theory of elastodynamics. A scheme of stress calculations that is necessary for strength analysis is established. The paper stresses on the applications in wave propagation problems in orthotropic media by demonstrating three examples. The semi-infinite orthotropic plates with and without a circular hole modeled by a unidirectional fiber-reinforced composite under impact loading are analyzed. Time histories of birefringent fringe orders or stresses for specific points of the plates are obtained respectively from the two methods and compared with each other. Based on the above comparative study, the dynamic response of an underground workshop under seismic waves is studied by time domain BEM. The responses of displacements and stresses are solved. The effects of angle and frequency of incident waves and the degree of media anisotropy on dynamic response of the underground workshop are investigated.  相似文献   

15.
建立了海底双层输油管道发生泄漏时的物理模型和数学模型.利用Fluent模拟软件,对海底双层输油管道泄漏过程进行二维数值模拟.结果表明:(1)垂直泄漏孔方向,压力逐渐升高,夹层压力传递过程中发生击波现象,击波范围逐渐减小.(2)对应泄漏孔壁面速度几乎为零,沿外壁面上速度最大.随着泄漏时间增加,速度逐渐减小.(3)泄漏最初夹层空间温度较高,泄漏孔压力越大,温度变化越快.  相似文献   

16.
方位各向异性介质的多尺度有限差分法波场模拟   总被引:1,自引:0,他引:1  
采用以裂缝走向为方位角的方位各向异性介质模型可以较好地描述裂缝性油气藏的实际情况,对弹性波在此介质中的传播过程进行准确的数值模拟有助于提高油气开采的准确程度。该文采用紧支集正交小波基对空间域进行多尺度离散,采用二阶精度有限差分算子对时域离散,推导得到了多尺度有限差分方法正演模拟的递推公式,并实现了相应的波传过程数值模拟。数值结果准确地反映了方位各向异性介质中波场的变化过程,可以清晰地观察到横波分裂和方位特征差异等现象。  相似文献   

17.
针对管道泄漏检测与定位方法存在负压波传播衰减、噪声干扰大、数据融合率低等3种问题,提出了基于鲸鱼参数优化(Whale Optimization Algorithm, WOA)的变分模态分解(Variational modal decomposition, VMD)和改进的自适应加权融合算法(Improved Adaptive Weighted Fusion, IAWF)的管道泄漏检测与定位方法。该方法提出了三传感器泄漏检测与定位模型,并利用抗干扰能力强的WOA-VMD算法对原始信号进行消噪处理;然后采用小波分析求消噪信号的奇异点,进一步求出压力变送器检测到负压波信号的时间差;在此基础上,利用改进的自适应加权融合算法对多传感器数据进行融合,最终求得泄漏点的实际位置。实验结果表明:该方法可以有效地滤除噪声分量,能获得更精确的融合结果,定位精度高,相对定位误差可以控制在1%以内,为管道泄漏检测与定位提供了一种新方法。  相似文献   

18.
随着管道运输行业的发展,复合管道越来越多地应用于机械、能源、化工等领域.利用超声界面波对复合管道的界面位置进行损伤探测成为机械装备超声无损检测研究的新方向.以充液金属复合管道为研究对象,采用多物理场有限元分析软件建立了充液复合管道的有限元模型,利用电信号激励超声界面波,分析了超声界面波在管道中的传播特性,并分析了不同液体对超声界面波的影响.结果表明:与空的复合管道相比,超声界面波在充液复合管道中的传播特性差别明显.在充液双金属复合管道中,超声界面波一部分来自初始激励,另一部分来自液体中激励的超声导波;随着传播的进行,初始激励的超声界面波迁移至固液界面处,形成固-液界面波,并逐渐泄漏至液体中;液体中的超声导波每经过一次管道壁面反射,在固液界面处形成一股新的固-液界面波,从而形成等间隔传播的固-液界面波群组.液体密度影响界面波的能量分布:液体密度越大,界面波能量越分散;液体的纵波波速影响固-液界面波的形成速度:纵波波速越快,固-液界面波形成越快.研究工作和分析结果可为管道损伤检测提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号