首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以自制的高熔体强度聚丙烯为原料,利用超临界流体技术制备了聚丙烯发泡材料。重点考察了发泡温度对所得聚丙烯泡孔结构的影响。结果表明:155~170℃为适宜发泡的温度区间,随着温度的降低,泡孔密度增加,平均泡孔直径减小;当发泡温度为160℃时,泡孔密度、平均泡孔直径和表观密度依次分别为1.03×107cell/cm3、73.86μm和0.016 g/cm3,此时发泡倍率最大,达到55倍;温度通过影响聚丙烯的结晶速率、熔体的黏弹性以及发泡剂在聚丙烯熔体中的溶解度和扩散系数等来控制泡孔结构和发泡倍率。  相似文献   

2.
将聚乳酸(PLA)与炭黑(CB)熔融共混,模压成型后通过二氧化碳气体辅助发泡法进一步制备出导电聚乳酸发泡复合材料(PCB).采用扫描电子显微镜表征了CB对发泡材料中泡孔形态及尺寸的影响,并通过高阻计和万能电子拉力机分别测试了PCB发泡材料的导电性和力学性能.结果表明,PCB复合材料泡孔结构均匀,其拉伸强度及电导率较PLA发泡材料明显增强.  相似文献   

3.
以聚丙烯(PP)与4种聚乙烯(低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)、热塑性弹性体(TPE))共混物作为原料,采用超临界二氧化碳作为发泡剂,在同向双螺杆挤出机-熔体泵发泡系统上进行挤出发泡实验。同时,运用旋转流变仪测试了LDPE、LLDPE、HDPE、TPE与PP共混对其流变性能的影响。结果表明,HDPE/PP、TPE/PP共混体系的储能模量较大、零切黏度较大,使用这两种发泡体系可以得到泡孔尺寸小、泡孔均匀性好的发泡制品,且制品泡孔致密,泡孔破裂及合并现象较少。  相似文献   

4.
以标准拉伸样条为研究对象,系统探讨了气体反压工艺中反压压力和作用时间对化学发泡注塑成型过程中熔体发泡行为的影响。根据实验获得的结果,提出了前沿泡孔不破裂的临界反压压力、熔体不发泡的临界反压压力和二次发泡卸压时间,并揭示了气体反压技术对化学发泡注塑过程中熔体发泡行为的影响机理。  相似文献   

5.
为了提高聚对苯二甲酸乙二醇酯(PET)的流变性能和发泡性能,采用环氧基扩链剂(ADR)对PET进行反应挤出改性,并利用动态旋转流变仪和单轴拉伸黏度仪对PET的流变性能进行系统表征,同时通过快速降压法研究了改性PET的发泡性能。流变测试结果表明:与未改性PET相比,ADR改性PET具有更高的复数黏度和低频区储能模量、更低的损耗角正切,呈现出明显的应变硬化现象;当ADR质量分数超过0.5%时,改性PET表现出凝胶结构的流变特性。采用间歇发泡工艺得到了发泡倍率为30倍、泡孔均匀细密的PET发泡材料,说明改性PET具有优异的可发泡性能。  相似文献   

6.
通过二次开模注塑成型法制备了聚丙烯/纳米SiO2复合材料的微孔发泡塑料。研究了SiO2对微孔发泡材料的泡孔结构和力学性能的影响。用扫描电镜对发泡样品的泡孔结构进行了表征。结果表明:在聚丙烯中加入纳米SiO2可以使泡孔直径减小、泡孔密度增加;但对发泡材料与未发泡材料的力学性能改变不大。  相似文献   

7.
采用4,4′-二苯甲烷二异氰酸酯(MDI)对聚碳酸亚丙酯(PPC)进行扩链改性,并用旋转流变仪表征改性PPC流变性能,采用间歇发泡装置对改性PPC进行发泡实验,研究温度及MDI含量对PPC发泡性能的影响。结果表明:MDI的加入有效提高了PPC的储能模量和复数黏度;随着发泡温度的升高,PPC的发泡倍率先增大后减小;70 ℃以下,随着MDI含量增加,泡孔平均直径减小,泡孔密度增大,发泡倍率降低;当MDI添加量达到0.7份时,发泡温区上限可以提高10 ℃左右,同时MDI的添加可以使PPC的收缩现象得到部分改善。  相似文献   

8.
添加LLDPE的聚丙烯开孔发泡性能研究   总被引:2,自引:0,他引:2  
采用差示扫描量热仪(DSC)和高级流变扩展系统(ARES)对高熔体强度聚丙烯(HMSPP)和 线性低密度聚乙烯(LLDPE)进行了测试和表征,并利用自行研制的超临界流体挤出发泡实 验装置,对不同配比的HMSPP/LLDPE进行了超临界二氧化碳挤出开孔发泡实验研究。结果表 明:LLDPE的结晶温度比HMSPP的低,在发泡温度下,LLDPE相还处于熔融态,而且LLDPE具有 较低的熔体弹性和熔体强度,因此LLDPE相易于在发泡过程中形成开孔结构。加入LLDPE,明 显提高了PP发泡样品的开孔率,开孔率均大于80%,但当LLDPE质量分数为30%时,发泡材料 的开孔率开始降低。  相似文献   

9.
在高聚物熔体中进行发泡时,气泡的泡孔半径在合适的条件下会发生机械振荡。理论计算表明气泡孔在高聚物中的振荡频率可高达到Ⅷ{z数量级;泡孔的振荡周期很短(约为10^-7s)。当机械振动在高聚物熔体中进行传括时,产生超声波;气泡孔在高聚物熔体中的快速膨胀及振荡产生高拉伸场,可利用拉伸场来分散添加在高聚物中的纳米材料。结果表明,在不添加任何分散剂的情况下,利用发泡的方法分散纳米材料可以实现其在高聚物中的纳米级分散。  相似文献   

10.
采用注射成型工艺制备了一系列不同配比的乙烯-乙酸乙酯共聚物(ethylene-vinyl acetate,EVA)汉麻秆芯粉(hemp stem powder,HSP)发泡材料.通过扫描电子显微镜(scanning electron microscopy,SEM)观察了HSP的结构形貌和EVA/HSP发泡材料的泡孔形貌;通过哈克转矩流变仪和旋转流变仪测试了EVA/HSP共混物的熔体强度和储能模量;探究了HSP含量对EVA/HSP发泡材料力学性能的影响规律.研究结果表明:HSP表面含有大量的裂缝和凹槽;随着HSP含量的增加,EVA/HSP发泡材料的泡孔尺寸由79.64μm下降到69.85μm,EVA/HSP共混物的熔体强度由3.7 N·m提升到4.5 N·m,EVA/HSP发泡材料的密度、硬度、拉伸强度和回弹性下降,断裂伸长率和压缩永久变形提高.  相似文献   

11.
利用热分析、相差显微镜等对LDPE-CaSO_4发泡复合物泡孔形成的原理,以及泡体的结构、性能与复合物组成、加工条件之间的关系做了研究,结果表明,CaSO_4·2H_2O不仅对LDPE有填充作用,而且有发泡作用;适当地消除其体积收缩效应,则泡体的发泡倍率可达14.7,并生成球状闭孔结构且梭上呈现许多无规微孔的泡沫塑料,这种材料只有较好的隔热、消膏等物理性能,又能保持机械强度基本不变。  相似文献   

12.
着重研究了粉末冶金法泡沫铝在不同发泡时间下的泡孔形貌和泡孔内表面褶皱的变化.结果表明:随着发泡时间的延长,气泡由近球形泡孔向多边形泡孔演化,布拉德边界逐渐变小和泡壁更薄,并出现了泡壁局部断裂以至于泡孔破裂并合并;早期的类裂纹孔是粉末冶金发泡过程中的固有特征,这是由粉末冶金前驱体内部存在的垂直于压制方向的内应力释放所造成的;泡孔内的褶皱反映了泡孔结构的演化过程,发泡前期泡孔内表面比较光滑,存在少量的褶皱,发泡中期内表面的褶皱以凸起为特征,后期由于重力作用的加剧和泡孔表面能的进一步升高,形成了带状褶皱的形貌.  相似文献   

13.
以超临界CO2为发泡剂,采用升温法和降压法制备PMMA微孔发泡材料,重点考察了发泡温度对所得PMMA微孔结构的影响。研究结果表明:对于升温法,随发泡温度升高,泡孔密度先增大后减小,这是高温下泡孔破裂合并的结果;对于降压法,随发泡温度升高,泡孔密度减小,泡孔尺寸增大,这与CO2在PMMA中的溶解度随温度升高而降低相关。  相似文献   

14.
以化学发泡为主线,通过注塑成型技术制备不同发泡剂的微发泡聚丙烯(Polypropylene,PP)复合材料,研究了PP材料中添加AC母粒(Azodicarbonamide,AC)、AC粉和微球母粒3种不同发泡剂对微发泡PP材料发泡质量和表面质量的影响。结果表明:不同特性的发泡剂添加到PP材料中进行发泡后,对发泡质量有较明显的影响; PP材料中添加AC母粒发泡质量最好,泡孔平均直径较小,为35. 8μm,泡孔个数较多,泡孔尺寸分布均匀。表面质量也存在明显的影响,PP材料中添加微球母粒(Na HCO3母粒)后,表面无明显的气痕和凹坑,表面光泽度最大,表面质量较理想。综合发泡质量和表面质量的影响因素,微球母粒适合于微发泡聚丙烯制品的发泡。  相似文献   

15.
采用液相复合-轧制技术制备不同w○Cu的可发泡预制坯及闭孔泡沫铝材,研究了w○Cu对泡沫铝泡孔结构的影响.结果表明:随着w○Cu的增加,泡孔结构的均匀性增加,孔径减小,泡孔合并产生的大泡孔数量减少,但泡沫体的塌缩和老化特征增强.对比不同w○Cu的预制坯的膨胀曲线,随着w○Cu的增加,预制坯的最大膨胀率先增大后减小,且达到最大膨胀率的发泡时间明显减少.微观结构分析表明:在AlSi9合金中加入Cu,生成了CuAl2O4和CuAl2,CuAl2O4提高熔体的黏度,减小了重力排液及毛细作用的影响,提高了泡沫的稳定性.CuAl2先于AlSi9熔化,在晶界上形成熔池,气泡提前形核长大,使发泡过程提前完成.  相似文献   

16.
粉末冶金法制备泡沫铝材料   总被引:15,自引:5,他引:15  
研究了粉末冶金法制备泡沫铝材料的方法·讨论了发泡过程中的保护方式、制坯压力、发泡温度等参数对泡沫铝体积质量、孔隙率、孔结构的影响,并对发泡机理进行了探讨·增大制坯压力使得金属坯致密,可以得到孔结构均匀的泡沫铝材料;发泡温度是影响发泡的主要因素之一,发泡温度控制在高于铝或铝合金熔点,同时保持熔体具有一定粘度的范围内,能够得到孔结构均匀、高孔隙率的泡沫铝材料·实验结果表明:采用熔盐保护方式,在300MPa的压力下,温度在675~680℃时,可得到孔径均匀、孔隙率高的泡沫铝材料·  相似文献   

17.
以超临界CO2为发泡剂,对聚丙烯(PP)/木粉复合材料进行快速降压发泡,并通过扫描电镜进行泡孔形貌观测。通过控制变量法,研究了发泡温度、饱和压力、降压速率和木粉质量分数对发泡体系泡孔形貌的影响,从超临界CO2溶解过程、泡孔成核过程以及泡孔孔径增大过程三方面分别进行了分析,并结合反应条件研究了泡孔密度及泡孔孔径的变化规律及其机理。  相似文献   

18.
利用粉末冶金法成功制备出不同表观密度的铝基泡沫材料,详细探讨了发泡工艺参数对泡孔结构和膨胀行为的影响.结果显示:前驱体自身温度变化分为线性快速升温、温度恒定和快速冷却三个阶段,发泡炉温的选择取决于线性快速升温阶段;比较不同发泡时间的泡孔结构和膨胀行为,可以得出最佳发泡时间和膨胀率分别为120 s和434%;前驱体预热对前驱体升温速率影响不大,但是可以缩短发泡时间.准静态压缩实验结果显示:铝基泡沫材料坍塌阶段的应力没有明显的波动,压缩强度、弹性模量以及压实应变都随着表观密度的增加而增加.  相似文献   

19.
以聚醚多元醇(N220、N330)和甲苯二异氰酸酯(TDI)为原料,采用一步发泡法,合成一种泡沫质地柔软、泡孔结构较好且具有较高吸油性能的软质聚氨酯泡沫.研究了催化体系、TDI指数、物理发泡剂、聚醚多元醇、水、泡沫稳定剂等对泡孔结构和吸油性能的影响.得到了最佳工艺配方,即:聚醚多元醇100份,TDI指数103%, A33为4.8份,辛酸亚锡(T9)0.8份,泡沫稳定剂为4份,物理发泡剂(141b)20份,水10份.制得的泡沫结构较好时,对原油的吸油倍率为35 g/g.  相似文献   

20.
以4种酚醛树脂为原料,在不添加固化剂的前提下,通过构建酚醛树脂的物化性质与发泡工艺和泡沫炭孔结构的内在关系来完善自发泡机理。研究结果表明:当不添加固化剂时,酚醛树脂的裂解行为及其黏-温特性是影响其发泡行为的关键因素;发泡过程中,当酚醛树脂的黏度低于2×104 Pa·s时,可以制得球形、孔径为300~500μm、孔结构均一的泡沫炭;发泡压力将影响泡沫炭孔结构的均一性及泡孔密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号