首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
通常准确测量物体的突变形面,采用一种双频变精度方法.该方法测量周期长,动态性较差,所以提出了基于虚拟复合光栅投影的三维轮廓测量技术.在计算机上模拟生成虚拟光栅,将两种频率的光栅合成为投影复合光栅进行测量.本文给出了这种测量技术的原理,实验结果表明,采用复合虚拟光栅投影三维形貌测量技术可以有效地解决相位展开所产生拉线的困难,实验效果较好.  相似文献   

2.
基于频率调制二元编码光栅相位测量剖面术   总被引:1,自引:0,他引:1  
分析传统的频率调制正弦光栅用于3步相移相位测量剖面术时,系统非线性对测量精度的影响,提出采用二元频率调制光栅,提高3步相移相位测量剖面术计算绝对相位测量精度的方法.完成了分别采用传统正弦频率调制光栅投影和基于Floyd-Steinberg二元编码频率调制光栅投影的相移剖面术的绝对相位计算结果对比.结果表明,采用正弦频率调制光栅模板的3步相移算法对系统的非线性敏感,而二元编码频率调制光栅模板既保持了利用单组条纹投影就可计算条纹绝对相位的优点,又不受系统非线性的影响,大大提高了基于频率调制光栅的相移剖面术的测量精度.计算机模拟和实验验证了所提方法的有效性.  相似文献   

3.
提高光栅投影测量精度的相移精确测量法   总被引:2,自引:0,他引:2  
在光栅投影测量的相位计算中,采用Gray编码和相移相结合的方法,并针对当前光栅投影测量中相位计算精度不高的问题,提出一种新的相移方法.与传统相移方法相比,该方法采用新的投影光栅光强函数.考虑到光栅投影测量中可能出现的标定误差、投影光非正弦模式以及其他干扰因素,在该函数中加入对这些干扰的纠正值,从而减少由这些干扰产生的不利影响,进一步提高投影光栅和对象测量的精度.通过对邻近点插值获得的投影光栅,条纹精度可以达到亚像素级.对实际测量获得的投影光栅图像的处理实验,证明了该方法的可行性和先进性.  相似文献   

4.
一种时间相位展开算法   总被引:3,自引:1,他引:2  
时间相位展开是使光栅条纹的频率随着时间而变化,每一像素点的相位沿着时间轴进行相位展开.现有的时间相位展开算法主要有线性、拟合线性、拟合指数、拟合负指数、拟合简约等时间相位展开算法;提出了一种减少投影帧数的方法.该方法只需投影三套不同频率的条纹,极大降低了数据的获取量和数据的处理时间;同时,在一定条件下不会降低测量精度.还对其高精度测量范围从理论和模拟两个方面进行了讨论,并将相同情况下该算法与其它算法恢复结果进行比较.  相似文献   

5.
提出一种新相移算法下的复合光栅投影三维测量方法.利用逆推法建立投影光栅模型,对投影仪投出的光栅进行预校正,保证投到参考面的条纹为标准的正弦分布.测量过程由具有相移的复合光栅到待测物体表面,CCD相机采集变形条纹图,将采集到的图像分离成3帧单色图,再由相位算法提取相位,通过高度映射公式恢复待测物体的三维面形.该方法有较好的抗噪性能,为动态在线测量奠定了基础.计算机仿真实验验证了该方法的可行性.  相似文献   

6.
提出一种新的基于彩色光栅投影的三维面形测量方法.将相移量为2π/3的RGB调制的正弦光栅复合成彩色光栅投影到被测物体表面,利用相移算法求解出相位,最终获得物体的三维数据.该方法只需一幅投影条纹图就可以完成三维测量,同时给出了理论分析和计算机模拟.  相似文献   

7.
数字光栅投影轮廓测量系统不确定视角标定法   总被引:3,自引:0,他引:3  
建立了数字光栅投影轮廓测量系统的简易标定模型,以实现测量系统的简便化和便携式应用。该标定模型基于绝对相位提取和空间映射技术,仅需确定像面坐标和绝对相位到空间坐标的转换矩阵。标定矩阵由L evenberg-M ar-quardt算法优化求解,其中所需的已知空间点阵列借助新型虚拟三维靶标实现。该虚拟靶标基于不确定视角摄像机标定法,仅需要一个平面靶标,避免了使用昂贵的平移设备,极大地降低了标定系统的成本和复杂度。对标定系统进行了大量实验,并使用标定球对测量系统进行了测量精度评价。实验结果表明标定精度高于0.2mm,证明该标定法具有很好的应用价值。  相似文献   

8.
数字光栅投影轮廓测量系统不确定视角标定法   总被引:1,自引:0,他引:1  
建立了数字光栅投影轮廓测量系统的简易标定模型,以实现测量系统的简便化和便携式应用。该标定模型基于绝对相位提取和空间映射技术,仅需确定像面坐标和绝对相位到空间坐标的转换矩阵。标定矩阵由Levenberg-Marquardt算法优化求解,其中所需的已知空间点阵列借助新型虚拟三维靶标实现。该虚拟靶标基于不确定视角摄像机标定法,仅需要一个平面靶标,避免了使用昂贵的平移设备,极大地降低了标定系统的成本和复杂度。对标定系统进行了大量实验,并使用标定球对测量系统进行了测量精度评价。实验结果表明标定精度高于0.2mm,证明该标定法具有很好的应用价值。  相似文献   

9.
采用一种基于小波分析的傅里叶变换轮廓术测量了物体三维形貌。利用小波变化的时频特性,对测量光栅图像进行了处理,提取了有用的频率分量,获得了光栅图像的相位信息,抑制了频率混叠。计算机模拟结果验证了该方法的可行性,并在有噪声和无噪声的情况下与一般数字滤波器处理结果进行了比较,无论从测量精度还是测量范围都得到了提高。  相似文献   

10.
采用一种基于小波分析的傅里叶变换轮廓术测量了物体三维形貌.利用小波变化的时频特性,对测量光栅图像进行了处理,提取了有用的频率分量,获得了光栅图像的相位信息,抑制了频率混叠.计算机模拟结果验证了该方法的可行性,并在有噪声和无噪声的情况下与一般数字滤波器处理结果进行了比较,无论从测量精度还是测量范围都得到了提高.  相似文献   

11.
利用计算全息(CGH)光栅产生的涡旋光束拉盖尔-高斯(LG)光束进行离面位移测量。基于二元叉形光栅产生LG光束的理论,将产生的LG光束作为参考光,加入一束平面光作为物光,设计了离面变形测量实验方案。利用物光和参考光的干涉进行物体变形测量,推导出物体变形前和变形后的干涉光强公式。通过数值计算,分析了利用LG光束进行变形测量的原理。数值模拟实验结果与理论结果基本一致,表明利用CGH叉形光栅产生的高纯度的LG光束可以进行物体变形测量。  相似文献   

12.
投影光栅条纹相位法通常用于三维物体形貌的测量.采用小波变换直接提取单幅光栅条纹图像的相位分布,不需要进行相位展开,即可得到物体表面轮廓.给出了小波分析应用在空间载波光栅条纹相位分析中的理论推导证明、计算机模拟以及实验验证结果,讨论了小波分析的抗噪能力,证实了该方法的可行性.  相似文献   

13.
详细分析了投影光栅的频谱结构、位相信号的频率范围及背景亮度等因素对测量精度的影响,提出了光栅周期、滤波器通频带及光栅信号幅度的选择范围。  相似文献   

14.
应用时域相位解包方法的三维形貌测量系统   总被引:1,自引:0,他引:1  
为了解决投影法三维形貌测量中测量点误差受相邻点影响的问题,投射计算机按照所需频率和相位生成的正弦条纹,利用时域相位解包算法实现每个测量点的独立计算。为了降低测量复杂形貌时因栅距变化产生的误差,发展了虚参考平面法。列举了在真人头面部和鼠标测量中的应用。实验结果表明,在进行复杂形貌三维测量时,采用时域相位解包方法可以抑制误差的扩散,不受不连续区域的影响。整个测量过程可在5s之内完成,测量平面时精度可达0.78%。  相似文献   

15.
对三维测量系统中使用的光栅进行编码时,将红、绿、蓝三个分量的灰度值均按余弦曲线分布,且三分量间有2π/3的相位间隔,形成颜色渐变的彩色光栅,再将该光栅投射到被测物体上。图像采集装置采集到的是受物体高度调制后的变形光栅,利用傅里叶变换轮廓术对变形光栅的三个分量分别处理,计算出三组被测物体的高度数据,然后对这三组数据进行平均。仿真结果表明彩色光栅投影方法可以得到被测物体的表面高度信息。  相似文献   

16.
赵斌  侯金龙 《江西科学》2003,21(1):46-49
提出一种新的测量光栅运动的方法,它利用声光调制器产生两个频率的激光,将其中一个频率的光入射到光栅上,产生正负级衍射光,光栅的运动使衍射光实现多普频移,然后将衍射光与另一频率的光干涉,即可实现光栅运动的外差干涉测量,正负级衍射光的同时使可以消除光栅横移的影响。  相似文献   

17.
根据正弦投影栅成像及其傅里叶变换的特点,提出了一种利用频谱扫描测量物体面形的方法.使用CCD摄像机采集一幅待测物面的图像,利用傅里叶变换法求出其空间频谱.扫描频谱图,确定参考平面投影栅线的空间频率,进而利用余弦函数模拟参考平面上的投影栅线分布.由待测物面上和参考平面上投影栅线的相对变形可求出物体的高度场分布.该方法不需要相位分布测量,也不需要解包裹运算,只需一幅图像即可实现物体的面形测量.笔者介绍了该方法的原理并进行了实验验证,给出了实验过程和实验结果.实验结果表明,该方法可实现物体面形的快速识别,有自动化程度高、计算速度快、对环境要求更低的优点.  相似文献   

18.
设计了一种测量重力的光纤Bragg光栅传感器。光纤Bragg光栅传感器结构形似梯形体,在梯形体的上台面可以放置被测物体,在下台面中间位置需要粘贴光纤Bragg光栅。通过这种结构可以将纵向力转换为横向力,重力测量转换为横向位移测量。实验结果证明,自制的光纤Bragg光栅传感器测量范围在0~3.5 kg之间时,波长与重力呈现较好的线性关系,进程、回程显示具有较好的重复性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号