首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 828 毫秒
1.
It has been one of the most intriguing questions in the earth sciences whether the snowball Earth event is genetically associated with mantle superwelling, supercontinent assemblage and breakup, and rift magmatism during the Neoproterozoic. In order to demonstrate the occurrence of significant interaction in energy and matter  相似文献   

2.
Formation and evolution of Precambrian continental crust in South China   总被引:25,自引:0,他引:25  
The occurrence of zircons with U-Pb ages of ~3.8 Ga and Hf model ages of ~4.0 Ga in South China suggests the existence of the Hadean crustal remnants in South China. Furthermore, a detrital zircon with a U-Pb age as old as 4.1 Ga has been found in Tibet. This is the oldest zircon so far reported in China. These results imply that continental crust was more widespread than previously thought in the late Hadean, but its majority was efficiently reworked into Archean continental crust. On the basis of available zircon U-Pb age and Hf isotope data, it appears that the growth of continental crust in South China started since the early Archean, but a stable cratonic block through reworking did not occur until the Paleoproterozoic. Thus the operation of some form of plate tectonics may occur in China conti- nents since Eoarchean. The initial destruction of the South China craton was caused by intensive magmatic activity in association with the assembly and breakup of the supercontinent Rodinia during the Neoproterozoic. However, most of the Archean and Paleoproterozoic crustal materials in South China do not occur as surface rocks, but exist as sporadic crustal remnants. Nevertheless, the occur- rence of Neoproterozoic magmatism is still a signature to distinguish South China from North China.  相似文献   

3.
The Doushantuo Formation of the Sinian System in the Yangtze area is the first sedimentary stratigraphic unit after the Neoproterozoic Snowball Earth event[1], named the Nantuo Glaciation in south China. There are not only phosphorite and manganese mineralized beds[2], but also a series of biome which represents the biological radiation in Neoproterozoic[3] found in this formation. It is important to study the palaeoenvironment and the early biological evolution implied in the Doushantuo …  相似文献   

4.
The volcanic rocks of the Xiong‘er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolutionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong‘er Group formed in 1.80--1.75 Ga of Paleo-Proterozoic. Since the Xiong‘er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong‘er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. Numerous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.  相似文献   

5.
Evolution of mantle and crust in all blocks of China and their relationship with the surrounding blocks are re-lated to amalgamation and breakup of the supercontinents. Studies on the Mesoproterozoic Grenvillian orogeny and the configuration of Neoproterozoic Rodinia provide the most important advances to the ideas of continental crustal growth and configuration of plates[1,2]. Recent studies show that there are geological records of assembly and breakup of Rodinia in the Cathaysia and Yang…  相似文献   

6.
Much attention has been paid in the last two decades to the physical and chemical processes as well as temporal-spatial variations of the lithospheric mantle beneath the North China Craton. In order to provide insights into the geodynamics of this variation, it is necessary to thoroughly study the state and structure of the lithospheric crust and mantle of the North China Craton and its adjacent regions as an integrated unit. Based on the velocity structure of the crust and upper mantle constrained from seismological studies, this paper presents various available geophysical results regarding the lithosphere thickness, the nature of crust-mantle boundary, the upper mantle structure and deformation characteristics as well as their tectonic features and evolution systematics. Combined with the obtained data from petrology and geochemistry, a mantle flow model is proposed for the tectonic evolution of the North China Craton during the Mesozoic-Cenozoic. We suggest that subduction of the Pacific plate made the mantle underneath the eastern Asian continent unstable and able to flow faster. Such a regional mantle flow system would cause an elevation of melt/fluid content in the upper mantle of the North China Craton and the lithospheric softening, which, subsequently resulted in destruction of the North China Craton in different ways of delamination and thermal erosion in Yanshan, Taihang Mountains and the Tan-Lu Fault zone. Multiple lines of evidence recorded in the crust of the North China Craton, such as the amalgamation of the Archean eastern and western blocks, the subduction of Paleo-oceanic crust and Paleo-continental residue, indicate that the Earth in the Paleoproterozoic had already evolved into the plate tectonic system similar to the present plate tectonics.  相似文献   

7.
In the Neoproterozoic, a large-scale magmatic activ- ity took place in the northern margin of the South China Block, with ages in a range of 700―800 Ma[1―4]). A systematic zircon U-Pb dating for bimodal metaigneous rocks in the Dabie-Sulu orogen yields ages of 758 ± 15 Ma[5], typifying rift magmatism along the northern margin of the South China Block during the middle Neoproterozoic. In addition, there is a widespread oc- currence of volcanic tuff interlayers around 635 Ma with the se…  相似文献   

8.
Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0-0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8-0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.  相似文献   

9.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

10.
On the timing and duration of the destruction of the North China Craton   总被引:14,自引:0,他引:14  
The timing and duration of the destruction of the North China Craton, which is pivotal to understanding the destruction mechanism and its geodynamic controlling factors, still remain controversial. On the basis of the principles of magma genesis and evolution, first we outline magmatic expressions that can be related to cratonic destruction, then use magmatic and basin evolution trends to constrain the timescale of the lithospheric thinning in North China. The main conclusions include: (1) the thinning of the lithosphere beneath the North China Craton might have started, at least locally, since late Carboniferous-late Triassic, attained its climax during the late Jurassic-early Cretaceous, and continued till the end of late Cretaceous-early Cenozoic. The destruction of the North China Craton was a relatively slow, rather than a dramatic process. (2) The weakened lithospheric zones along the margins and interiors of the craton played an important role in cratonic destruction, partly accounting for the heterogeneous pattern of cratonic destruction. (3) The tectonic factors that controlled the destruction of the North China Craton may be multiple. The late Carboniferous southward subduction of the Paleo-Asian plate and the late Triassic collision between North China and South China may have re-activated the craton by influencing the thermal and integral structure of the craton. The Pacific subduction underneath the eastern Asian continent played a determinant role in the cratonic destruction, governing the distribution patterns of post-Mesozoic basins and major tectonic configuration, temporal change of magmatism and formation of the North-South gravity lineament.  相似文献   

11.
The Qilian Mountain is considered a part of the Cen- tral Orogenic Belt of China[1]. The Central Orogenic Belt of China, extending for a distance of about 4000 km long in the E-W direction from the east coast west- ward through the mainland China all the …  相似文献   

12.
Geological records of Neoproterozoic magmaticevents have recently been identified in the central Phanerozoic orogenic belts of China[1]. In regions of east Qinling orogen[2], Dabie-Sulu orogen[3], north Qaidam Basin orogen[4―6], and southwest Tarim Basin…  相似文献   

13.
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000?p.p.m.v.) in the aftermath of the Marinoan glaciation (~635?Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200?p.p.m.v.--and possibly as low as the current value of ~400?p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.  相似文献   

14.
Position of South China in configuration of Neoproterozoic supercontinent   总被引:7,自引:0,他引:7  
ConfigurationandevolutionofNeoproterozoicsu-percontinentandthepositionofSouthChinawithinithavebeenveryimportanttargetsinearthsciencesconcerningmanyforefronttopicsofgeneralinterest.InthecommonreconstructionofthesupercontinentRodinia,SouthChinawaslocatedbetweenAustraliaandLaurentia,andthusliesinthecenterofthesupercontinentandsoutheastofAus-tralia[1].Accordingtothenewpaleomagneticandgeo-chronologicaldataforthe~800MaXiaofengdykeinYi-changaswellasexistingdata,Lietal.[2]suggestthatRodiniawouldp…  相似文献   

15.
Based on detailed field investigations and petrographic observations, we discovered Neoproterozoic-emplaced granite from the metavolcanics of the Dingyuan Formation in the western Beihuaiyang zone, the Dabie orogen. This study reports the results of zircon U-Pb dating and preliminary petrographic observations on two metagranite samples. The studied rocks experienced epidote-amphibolite facies metamorphism and strong structural deformation. Their U-Pb ages are 726 ± 6 and 758 ± 12 Ma, respectively, similar to those for the Luzhenguan complex in the eastern segment of the Beihuaiyang zone. In combination with previously determined 635 ± 5 Ma low-grade metagabbro, this study suggests the occurrence of at least two types of Neoproterozoic intrusive rocks in the Beihuaiyang zone, the northern margin of the South China Block (SCB): 726–758 Ma metagranite and 635 Ma metagabbro. These rocks occur within the metamorphosed Ordovician volcanic zone (originally named the Dingyuan Formation) and are in tectonic contact to each other, but they formed in different tectonic settings. The protolith ages for the Neoproterozoic low-grade metaigneous rocks are in good agreement not only with ages for two episodes of mid- and late-Neoproterozoic mafic and felsic magmatism in the Suizhou and Zaoyang area, Hubei Province, but also agree with protolith ages of ultrahigh-pressure metaigneous rocks in the Dabie-Sulu orogenic belt. In view of their tectonic relationships to country rocks, it appears that these Neoproterozoic low-grade rocks are exotic and they may have been detached and scraped from subducting SCB crust in the early Triassic during the initial continental subduction, and thrusted over Paleozoic metamorphosed rocks in the southern margin of the North China Block during continental collision.  相似文献   

16.
Palaeoproterozoic global glaciation (~2.3 Ga) may have been the first “snowball” Earth event in Earth history. North China has well-exposed sedimentary deposits of this time period with minimal postdepositional alteration. Sedimentary evidence of a glaciation event has been lacking, however. Here we analyzed carbon isotope composition of the Paleoproterozoic Hutuo Group (2.5–2.2 Ga) in the Wutai Mountain area, Shanxi Province, North China. Our data show, in an older to younger chronostratigraphic order, (1) positive δ 13Ccarb values in the Dashiling Formation of the Doucun Subgroup (3.2‰ to 1.0‰, VPDB); (2) a decrease in δ 13Ccarb values from the Wenshan Formation to the middle Daguandong Formation (from 2.0‰ to–1.2‰), during which time the occurrence of stromatolites declined; (3) a pronounced negative excursion in the upper Daguandong Formation, at the boundary of the Daguandong and Huaiyincun formations (from 1.4‰ to ?3.3‰), where stromatolites disappeared; and (4) a gradual increase of δ 13Ccarb values in the Beidaxing and Tianpengnao formations (from ?1.2‰ to 1.4‰), during which time stromatolites returned. We argue that the negative carbon isotope excursion recorded from the Jian’ancun Formation to the middle Daguandong Formation of the Hutuo Group may have been North China’s response to the Palaeoproterozoic global glaciation.  相似文献   

17.
Natural gas (methane) hydrates, the crystalline solids composed mainly of methane and water, are present in marine sediments of the continental margins and polar permafrost under a delicate balance of temperature (< 7℃) and hydrostatic pressure (> 50×10…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号