首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 113 毫秒
1.
采用合成射流作为主动控制手段,对自由空间中D型体尾流的控制机理和气动减阻进行了数值仿真。合成射流布置在D型体垂直背上下缘处并同时作用,射流方向与来流方向平行,频率从40 Hz变化到500 Hz。结果表明,在整个频率范围内都实现了减阻。在低频激励(65 Hz)作用下,尾流上下两侧剪切层趋于同步化,汇合位置延后,卡门涡街强度减弱;在高频激励(500 Hz)作用下,伴随着整流,剪切层向内偏转,尾流夹带现象减弱,回流区略延长。卡门涡街的抑制对于钝体尾流的形成以及减阻效果有着显著的影响。  相似文献   

2.
仿生射流表面减阻特性实验研究   总被引:2,自引:1,他引:1  
基于鱼类鳃裂部位仿生射流表面理论分析,对仿生射流表面回转体进行射流实验,研究其减阻特性。运用扭矩信号耦合器,分别对光滑表面实验模型和射流表面实验模型在不同旋转速度下进行摩擦扭矩测试,得到射流减阻特性曲线。研究结果表明:仿生射流表面具有较好的减阻效果,减阻率与实验模型转速、射流速度、射流孔径有着密切关系;射流最大减阻率达到10.8%。  相似文献   

3.
以SAE(美国机动车工程师学会)模型为研究对象,采用计算流体力学数值模拟方法研究非光滑表面布置位置对车身气动性能的影响.通过对钝体模型的不同位置(侧部、底部、顶部、尾部)布置凹坑型非光滑表面,计算钝体模型的空气阻力系数,比较光滑表面与非光滑表面速度矢量、压力以及湍动能,分析了非光滑表面气动减阻机理和减阻效果差异的原因,根据分析结果得到在模型的侧部、顶部、尾部和底部布置非光滑表面均能起到减阻作用,尾部非光滑表面的减阻效果最明显,减阻率达到5.73%.  相似文献   

4.
为了研究射流表面的减阻特性,提出了同轴旋转测试方法,建立了同轴旋转测试与平面测试下模型壁面所受摩擦阻力间关系的数学模型,构建了射流表面减阻测试系统.对射流表面回转体模型进行实验,研究射流孔径、射流角度、旋转速度与射流速度耦合情况下射流表面的减阻特性,并将实验结果与数值模拟结果进行对比分析.实验结果表明:射流表面在一定条件下具有较好的减阻效果;各因素对实验指标的影响按大小次序依次为射流孔径(A)、射流角度(B)、射流速度(D),最佳方案为A2B2D3,减阻率为8.565%.通过模型实验值与数值计算值比较分析,验证了实验结果的可信性及所建模型的准确性.  相似文献   

5.
为了研究多因素耦合对射流表面减阻特性的影响,运用可拓学基本原理建立主流场速度、射流速度、射流孔高排布、射流孔底排布等特征耦元及其耦合方式的可拓模型,利用标准k-ε湍流模型对射流表面多因素耦合条件下的减阻特性进行数值模拟,分析射流表面黏性阻力和减阻率减小的原因,以及射流表面多因素耦合对射流孔附近壁面流域边界层的控制行为.结果表明:射流表面多因素耦合的减阻效果较好,最大减阻率为27.69%;多因素耦合条件下的射流表面改变了壁面剪应力分布,影响了边界层的结构,同时,在射流孔下游形成的漩涡改变了边界层的厚度,导致壁面黏性阻力降低,从而使得射流表面具有较好的减阻效果.  相似文献   

6.
利用SST k-ω湍流模型对仿生矩形射流表面的减阻特性进行数值模拟,解释了射流表面减小摩擦阻力的原因及对近壁区边界层的控制行为.结果表明,射流孔面积相等时,射流孔与射流表面沿展向长度的比值越大,减阻效果越好.当其它因素不变时,随着射流速度的增大减阻率逐渐增大,随着射流流量的增大减阻率逐渐增大,最大减阻率为35.97%.射流表面对边界层的控制行为表现为主流场近壁区的剪切流动遇到射流的阻抗,在射流孔的背流面形成逆流区,逆流在边界层底层产生的剪应力与主流场方向相反;同时在射流孔下游产生反向旋转涡对并在近壁面诱导出二次涡,相当于在高速流体与壁面之间产生润滑带,使边界层黏性底层厚度增大,速度梯度减小,摩擦阻力减小.  相似文献   

7.
为了研究射流孔结构参数对水下射流减阻的影响,以金枪鱼为仿生对象建立仿生鱼模型,通过模拟鲨鱼鳃在仿生鱼模型侧面添加射流孔建立了射流模型.采用数值模拟方法,分析主流场速度及射流孔的形状、高度、位置、高宽比等单因素对仿生鱼表面减阻的影响规律.通过Design-expert软件对射流孔的结构参数进行响应面多目标参数优化,进一步分析了不同射流孔的结构参数在相互作用时对仿生鱼表面减阻的影响,最终确定了在距离鱼首5 mm处添加形状为后三角形,高度为6 mm,高宽比为4的射流孔时能够达到比较理想的减阻效果,此时模型的总阻力为2.510 21 N,相应的减阻率为6.49%.本文通过深入分析射流孔结构参数的影响,为水下射流减阻技术提供了重要的理论基础和实验指导,为仿生技术在水下流体力学领域的应用拓展了新的可能性.  相似文献   

8.
田新亮研究小组提出了一种简称为"软尾减阻"的新型流动控制方法,即通过在钝体后侧构造柔性封闭体来调节其所受流体载荷及周围流动形态.相比于传统流动控制方法,该方法无需改变控制对象的结构,具有良好的工程应用前景.同时,"软尾减阻"引出了一种新的"流-固-流"耦合问题,亟待进一步研究.  相似文献   

9.
基于Langtry-Menter转捩模型的SST湍流模型,通过求解三维非定常雷诺时均Navier-Stokes方程,数值研究了低雷诺数下合成射流涡发生器对Pak-B低压透平叶片吸力面流动分离的影响,揭示了低压透平叶片表面合成射流非定常流动的控制机理.结果表明,引入合成射流涡发生器能够抑制甚至消除低雷诺数下叶片吸力面上的流动分离.在雷诺数为25 000、自由流湍流强度为0.08%下,提高射流控制频率有助于增强合成射流涡发生器对低压透平叶片表面流动分离的控制效果,减少流动损失.当控制频率为10Hz时,叶栅出口的相对总压损失系数为0.42;当控制频率增加到20Hz时,相对总压损失系数仅下降到0.41.这表明,当合成射流控制频率大于10Hz时,继续增加控制频率来减少叶片表面流动损失的效果是不明显的.  相似文献   

10.
为了研究涡旋射流控制流动分离的物理机理,基于大涡模拟方法对涡旋射流控制下的矩形扩压器流场和射流流向涡结构的生成、发展等动力学演化过程进行了数值研究.结果表明:射流产生的流向涡将主流高动量气流带入分离区,增加了边界层内气流流动方向的动量,使流动分离得到了抑制.射流流场的涡结构主要由射流剪切层涡、马蹄涡、尾涡组成,由于速度梯度大小的变化,使得射流剪切层涡系的结构随着时间推移从涡卷演化为涡环.对于脉冲射流,在低频脉冲下,射流产生的流向涡呈涡卷结构,流动控制效果明显.在高频脉冲下,射流剪切层涡演变成间歇涡环结构,流动控制效果减弱.通过对比脉冲频率和占空比对流动控制的影响发现,占空比为0.5、频率为20Hz的脉冲射流具有较好的流动控制效果.  相似文献   

11.
采用二阶CBS有限元法对雷诺数Re=100时不同间距的串列方形钝体构筑物的绕流进行数值研究,分析了间距比s(构筑物中心距离与构筑物宽度d之比)对流场的影响,以及平均阻力系数、阻力系数均方根、升力系数均方根、斯特劳哈尔数和压力系数随间距比变化的情况. 结果表明:间距比对串列方形钝体构筑物的流场影响显著;当2个方形构筑物为串列情形时,可有效降低流体阻力;当临界间距比在4.50~4.75时,其各项力学性能指标将发生跳跃;由于上游构筑物尾流的影响,下游构筑物的升力系数均方根总大于上游构筑物而表现出更强的脉动性,且2个构筑物表面压力分布的差异显著.  相似文献   

12.
采用数值模拟方法研究了基于合成射流技术的高空飞艇流动控制方法。将合成射流装置安放在飞艇表面,靠近分离线处,并沿分离线布置,通过合成射流口吹吸空气产生涡流,并将其注入边界层内来达到延缓流动分离,进而达到减阻和大迎角阵风减缓的目的。研究首先利用对原始飞艇进行仿真,找到分离线的位置,进而研究了合成射流口出射速度幅值不同时飞艇阻力系数的变化,并以此来分析合成射流的流动控制效果。结果表明,射流口吹吸速度幅值越大,时均减阻效果越好,但射流的能量消耗也越大,气动力的脉动幅值也大。在扣除合成射流本身的能量消耗影响以后,最优的时均控制效果发生在迎角30°左右。研究结果显示,合成射流可以用来降低飞艇小迎角下的巡航阻力,也可以用来控制大迎角情况下的瞬态气动力,从而作为阵风减缓措施。  相似文献   

13.
采用水模拟氢气泡流动显示的方法对开缝钝体近尾流结构进行了实验研究.结果表明,二维对称结构中产生的中缝偏斜射流对钝体两边脱体剪切层的相互干涉起到抑止作用,从而加长了回流区,降低了压力损失.该实验不仅证实了开缝钝体燃烧器优良的尾流特性,也为认识这种特性提供了直观依据  相似文献   

14.
采用数值模拟与风洞试验两种方法,研究以粒突箱鲀为仿生原型的近地鱼形钝体气动阻力特性.结果表明,近地鱼形钝体确为气动低阻形体,其尾部大收缩角的形态特征及尾迹区相对简单的流场结构共同决定了该形体的气动低阻特性;从气动阻力系数、表面压力系数及尾迹区流场结构三方面对比分析,SST湍流模型的预测值与试验值较为接近.  相似文献   

15.
利用大涡模拟方法,研究了激励频率对三维地面车辆气动阻力的影响规律及其控制机理.流动分析结果表明:合成射流布置在车辆顶部和斜背交界处,在不同激励频率下实现车辆减阻,当频率低于90 Hz时,增大频率,阻力增大;频率高于90 Hz,随着频率的增大,阻力减小;频率达到1 500Hz时,阻力不再减小.斜背附着距离和雷诺应力分布的差异解释了气动力随不同激励频率变化的原因.不同激励频率下的频谱分析表明:合成射流控制了斜背动态附着现象,导致速度、压力和阻力系数频谱峰值皆对应激励频率.  相似文献   

16.
等离子体合成射流激励器的流场特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
等离子体合成射流作为一种新型的主动流动控制技术,是针对传统合成射流激励强度差而设计的。利用Fluent 6.3软件,采用结构化网格,对等离子体合成射流激励器流场进行了二维非定常数值模拟,研究单次放电激励器流场的演化规律,并且比较了不同放电时间尺度对激励器出口速度的影响。研究表明:等离子体合成射流激励器能够产生高速射流,最大速度达到439 m/s,大大增加了流场湍流度;激励器放电时间越长,出口峰值速度越大。计算结果表明等离子合成射流激励器能够应用于高速流动控制。  相似文献   

17.
等离子体流动控制技术具有结构简单、响应迅速等特点,已成为流动控制领域的研究热点。为减小飞机的湍流摩擦阻力, 提出了一种基于方格网状等离子体激励器的新型湍流减阻方法,研究了其放电特性与诱导流动特性,并在风洞中获得该激励器减小NACA0012翼型湍流摩擦阻力的参数规律。结果表明,静止条件下,方格网状激励诱导的射流速度与占空比成正比,而随脉冲频率的增大先增加后减小,诱导射流的最大瞬时速度为1.75 m/s。来流速度为15 m/s时,激励能使翼型湍流摩擦阻力减小3.5%。方格网状激励诱导产生的射流使近壁面流体整体抬升,破坏近壁面涡结构,进而抑制湍流生成,实现摩擦减阻。  相似文献   

18.
采用带L型尾喷管拖曳球方法,模拟水下航行体艇体与冷却水排放等产生的阻力与射流动量尾迹,实验研究了这种组合式动量尾迹在密度分层流体中的演化特性.研究表明,当JD/J〉CD时,这种组合式动量尾迹的演化特性主要受拖曳球阻力动量尾迹控制,形成正卡门型准二维偶极子涡街结构,其中JD为拖曳球产生的阻力动量流量,J是L型尾喷管产生的射流动量流量,CD是球体阻力系数;当JD/J〈CD时,这种组合式动量尾迹的演化特性与(Rej,Frj)的组合条件密切相关,主要受射流动量尾迹控制,在(Rej,Frj)的某些组合下可能会形成反卡门型准二维偶极子涡街结构,但也可能不产生任何形式的大尺度相干结构,其中Rej和Frj分别为射流Reynolds数与Froude数.在系列实验基础上,获得了这种组合式动量尾迹在密度分层流体中能够演化为反卡门型准二维偶极子涡街结构的(Rej,Frj)组合条件,并对不同的Rej取值,获得了准二维偶极子涡街无量纲形成时间及其无量纲涡街平均波长倒数与Frj之间的相关关系,结果表明它们都是不依赖于Rej的,而且与Frj近似为幂指数关系.  相似文献   

19.
车轮宽度对轿车风阻的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
针对某三厢轿车,采用计算流体动力学(CFD)数值计算方法,研究车轮宽度对整车气动性能的影响.通过综合分析不同宽度孤立车轮周围的流场结构变化及具有不同宽度车轮的整车周围流场的结构特性,得到结论:车轮宽度每减小5%,单车轮模型气动阻力约减小9.2%,整车模型气动阻力约减小2%.这是因为减小车轮宽度可以减小车轮两侧的气流分离,缩小尾部涡流区域,降低车轮及汽车尾部湍流强度,从而有助于降低车轮及整车气动阻力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号