首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为了描述三塔悬索桥抖振性能,采用实测与规范风谱进行了抖振对比研究.基于润扬、苏通桥址区多次台风现场实测数据及结构健康监测系统数据库的数据资料,采用非线性最小二乘法获得桥址区实测强风风谱模型——实测谱.以世界第一大跨度三塔悬索桥主跨1 080 m的泰州大桥为工程背景,分别采用规范谱和实测风谱为目标谱模拟了桥址区的三维脉动风场,据此开展了基于ANSYS的三塔悬索桥抖振响应对比研究.结果表明:2种主梁抖振位移PSD曲线基本一致,各方向的第一阶振型对主梁抖振响应的贡献最大;泰州大桥主梁沿跨度方向侧向抖振位移RMS分布与两塔悬索桥基本一致,竖向与扭转抖振位移RMS分布表现出了其独有特点;采用实测谱的主梁抖振响应略小,规范谱偏于保守.研究结果可用于该桥的风致抖振分析,同时可对其他同类型桥梁的抗风设计提供重要参考.  相似文献   

2.
为准确模拟山区峡谷桥址处的三维紊流风场,以澧水大桥所在峡谷为工程背景,将现场实测风场用谐波合成法进行等效处理生成了满足峡谷风场特性的随机来流,然后基于对Fluent的二次开发,将生成的随机来流赋予大涡模拟的入口边界.通过对比本文方法和无脉动入口计算结果发现,本文方法更能体现山区峡谷风场的真实流态,最后在本文方法基础上对不同风向角作用下的山区峡谷桥址处风场进行了数值模拟,得到了峡谷桥址处风场的详细分布特性,可为山区峡谷地形紊流场精细化数值模拟提供参考.  相似文献   

3.
基于最大熵可靠度理论,提出了润扬大桥悬索桥的桥址极值风速预测方法,从而为润扬大桥悬索桥的风效应可靠度评估提供实际的荷载概率模型.根据桥址实测短期风速风向数据,计算了反映桥址气候特征的日最大风速风向频度函数,并计算了统计的桥址风速风向联合概率密度函数曲面.在此基础上采用最大熵法建立了桥址的风速风向联合概率模型,并对润扬大桥悬索桥50年和100年重现期内的极值风速进行了预测.分析结果表明,采用联合概率模型能够较好地描述润扬大桥悬索桥桥址的良态气候风场模式,并且桥址预测的极值风速小于设计风速,说明润扬悬索桥抗风设计时考虑了较大的安全度.  相似文献   

4.
对基于小波变换的非平稳时间序列演变功率谱密度函数的估计方法进行了总结.以苏通大桥结构健康监测系统实测的台风达维、海葵以及冬季强北风数据为研究对象,基于Morlet小波计算了上述3个实测典型强风的演变功率谱密度函数.实测风演变谱在时域内的均值与傅里叶谱吻合良好,验证了演变谱估计结果的准确性.实测强风的演变功率谱分析结果表明,脉动风的能量主要集中在低频部分,且脉动风速功率谱随时间变化显著,具有较强的非平稳特性.基于平稳随机过程假设的传统风谱计算方法无法准确描述实测强风风谱的非平稳特征.研究结论可为桥址区三维非平稳脉动风场的准确模拟以及强/台风作用下苏通大桥的非平稳抖振分析提供实测参考.  相似文献   

5.
以某复杂深切峡谷大跨度悬索桥为工程背景,构建桥址区水库蓄水后的地形数值模型,对桥址区进行区域地形风场数值模拟研究.通过36个不同来流工况的对比分析,探讨水库蓄水后的主梁平均风速、风攻角、风剖面以及风速放大系数在不同来流风向下的变化规律.研究表明,山区库区桥址风场特性分布比较复杂:主梁横桥向平均风速随来流风向变化较大,主梁出现较大负攻角效应;典型工况下横桥向风速沿主梁由北岸向南岸递减;多数工况下,桥址区风剖面分布复杂,远不同于常规指数律;桥位出现较明显的峡谷风效应,风速放大系数最高达1.06.研究结果为水库库区大跨度桥梁的抗风设计提供一定的依据.  相似文献   

6.
根据测风塔和当地气象站数据,对江底河大桥桥址处深切峡谷的风场特性进行研究.基于数据统计分析得到桥址处风场的平均风速、风向、湍流强度、湍流积分尺度和湍流的功率谱密度函数.结果表明:该桥所在的深切峡谷地形对风向有锁定作用、对风速有加速作用、并且对各个风向下的湍流特性有明显的影响;深切峡谷顺风向湍流强度与平均速度的关系用反比例型函数拟合,拟合效果良好且高风速下接近规范值;竖风向湍流强度明显高于规范推算值.顺风向实测风谱与Kaimal谱相差较大而与von Karman谱吻合较好;竖风向实测风谱明显大于Panofsky风谱而与von Karman谱比较接近.横风向实测风谱与Panofsky谱、von Karman谱都比较接近.  相似文献   

7.
为研究山区风场近地层风速的脉动特性,利用安装在青草背长江大桥上的高频风速仪对桥址处风场进行为期8个月的全程监控.根据实测风速序列分析了在桥址处平均风速、风向、湍流强度、阵风因子和功率谱的统计特征,并针对山区风阵风因子随湍流强度变化关系以及不同计算时距条件下阵风因子的换算关系进行了探讨.研究结果表明:受局部热力环流的影响,桥址风场具有明显周期性变化特征;高风速下顺风向湍流强度及竖向风速相对湍流强度大于桥梁抗风设计规范建议值,而横风向相对脉动强度则比桥梁抗风规范值小;阵风因子随阵风计算时距的变换规律可以用对数高斯函数加以描述;山区复杂地形、地貌导致风速中湍流成分发育更为充分,湍流高频能量相对较大,脉动风速谱在高频段比规范推荐风谱大,低频段比规范推荐谱小.  相似文献   

8.
为研究新疆乌鲁木齐所处达坂城风区的复杂脉动风环境,基于实测风场风速数据分析并拟合了该风区的顺风向脉动风功率谱。结果表明:以反比例函数拟合山区峡谷地形平均风速与湍流强度的关系误差较小;山区峡谷地形湍流积分尺度分布较离散,但整体随平均风速的增大而增大;考虑地形系数的Kaimal修正谱在含能区和惯性子区间能较好地表征实测谱,在耗能区选用三参数拟合描述实测谱效果良好;选用过渡函数来描述惯性子区间与耗能区接触区域的功率谱,拟合效果较为理想。可见达坂城风区具有特殊顺风向脉动风特性,以修正谱和拟合谱分段构成的函数模型可用于表征该风区顺风向脉动风功率谱。  相似文献   

9.
文章采用非线性的有限元理论对柔性悬索桥进行抗震分析,采用反应谱法与动态时程分析法对该桥在地震荷载作用下的响应进行了分析,时程反应分析与反应谱分析的结果存在较大差异,分析认为对于大跨度的柔性结构,反应谱法已不能适用.结合该人行悬索桥设计,将大跨悬索桥的设计理论与柔性悬索桥的实际情况相结合,根据计算结果采取相应的工程措施,注重结构的安全性、适用性、经济性和美观性,充分发挥柔性悬索桥的交通通行功能,对悬索桥的设计具有指导意义.  相似文献   

10.
在福建省平潭县王爷山构建风场实测系统,记录了2017年1709号台风“纳沙”和1710号台风“海棠”的三维风速时程. 利用两次台风数据,对台风风眼区经过前后的近地边界层风特性进行研究和分析. 总结风速剖面参数、湍流强度、湍流积分尺度、阵风因子等风参数的分布规律和风眼壁区脉动风速功率谱在频域内的特征,并对实测风速功率谱进行了分析及拟合,得到适应该地区的风速功率谱及相应谱参数,供该地区结构抗风设计参考.  相似文献   

11.
为研究风电机组塔筒结构的气动力特性,基于ANSYS软件,建立了塔筒结构的简化模型并对其进行绕流风场的数值模拟分析,主要探讨了塔筒结构表面风压分布特征,风场风速、湍流度及不同高度比对塔筒表面风压分布的影响.结果显示,圆锥塔筒结构背风面在绕流作用下沿高度方向由上向下形成连续几个回流区,导致背风面受到正压作用;不同风速只有对塔筒背风表面压力大小有较之明显影响,而对塔筒迎风面及侧风面压力大小影响很小;湍流强度对模型表面风压系数大小有不同程度的影响,随着湍流强度的增加,模型侧面(大部区域)、背风表面的压力绝对值相应减小;不同高度比对模型表面风压分布有显著影响.研究结论可为风力发电机塔筒结构的设计提供参考.  相似文献   

12.
针对下击暴流稳态风场模拟问题,基于计算流体动力学方法(Computational Fluid Dynamics,CFD),首先分别采用二维、三维冲击射流模型对下击暴流风场进行数值模拟,对下击暴流风场特性进行研究.在此基础上,根据下击暴流对桥梁结构作用主要受水平风速影响的特点,采用二维数值模拟方法对边界层风洞中设置倾斜平板模拟下击暴流水平风速风场进行了研究.最后,设计并加工了边界层风洞下击暴流水平风速模拟试验装置,在边界层风洞中进行了下击暴流水平风速风场模拟试验,并将数值模拟结果与试验结果和已有文献结果进行了比较.结果表明:下击暴流风场的二维冲击射流模型模拟结果与三维冲击射流模型模拟结果吻合较好,即二维冲击射流模型是一种有效的下击暴流风场简化模拟方法;在边界层风洞中设置倾斜平板所模拟的下击暴流水平风速风场数值模拟结果和风洞试验结果具有较好的一致性,并与冲击射流模型数值模拟结果和现场实测结果均吻合较好,即在边界层风洞中设置倾斜平板可模拟下击暴流水平风速稳态风场特性.  相似文献   

13.
基于一台33 kW的水平轴风力机,利用大涡模拟耦合致动线的方法,模拟均匀来流以及不同湍流度来流条件下的风力机尾流流场,研究湍流度对水平轴风力机尾流及转矩特性的影响.结果表明:湍流来流时风力机尾流与周围流场的能量交换比均匀来流时更强,湍流掺混速度更快,从而使得尾流区速度恢复加快,且湍流度越大,速度恢复越快;相较于均匀来流,湍流来流时风力机尾流速度的最大亏损率减小,但湍流度大小对尾流速度最大亏损率影响较小;尾流半径增长速率在风轮平面至风轮后两倍直径范围内逐渐减小,在两倍直径之后基本不变;湍流会使尾流膨胀程度增强,且湍流度越大,膨胀程度越强;在11 m/s风速条件下,湍流度增大导致风轮转矩时均值减小,波动幅度增大,风轮转矩在高频与低频部分的能量升高,并且低频部分能量升高得更快.  相似文献   

14.
针对风切变这一影响航空飞行的主要天气现象,进行小尺度下的风场数值模拟研究。实验模拟时段为协调世界时2014年6月8日06时至2014年6月8日24时(9日00时),对研究区域内生成并过境的强对流天气系统进行中小尺度的绝对涡度、水平风场和垂直风场的模拟;并提取小尺度下的风速风向值,尝试对风切变提取。结果表明:1数值模式能够清晰立体地模拟出这一次强对流天气系统的生成和运动的整体状况;2小尺度下能够对该强对流天气系统的局部进行精细化的立体的模拟;3通过分析小尺度下的数值模拟输出产品,能够判别出风切变;4对于风向数据,采用余弦平滑法能够进行有效的质量控制观察分析。  相似文献   

15.
针对膜结构周围复杂地形区域内的三维湍流,采用Monte Carlo模拟技术对非均匀流风场湍流进行建模,用FFT变换代替基于谐波叠加原理的经典模拟方程.湍流功率谱密度矩阵的分解采用本征正交分解获得,用平行算法执行整个模拟程序.最后,将该程序用于模拟一体育场膜结构挑篷周围三维风场.模拟谱与目标谱符合良好,证明了该建模方法和提高计算效率的三种方法的正确性和有效性.  相似文献   

16.
风场扰动对无人机控制/导航影响效应仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
为了全面、定量分析风场扰动对无人机控制/导航系统的严重影响,选取某型探测/侦察无人机作为典型代表,首先利用近60余年NCEP再分析资料,针对我国及周边地域,进行了低空风场建模(包括平均风速和湍动分量)和仿真再现;在此基础上,在Matlab/Simulink仿真环境中,构建了该无人机虚拟样机,包括动力学、控制、惯性/GPS导航等关键子系统,反映了其基本飞行品质和控制响应;最后,分别在理想和风场扰动条件下,进行了该无人机典型巡航/侦察任务的飞行仿真,得到了飞行航迹/姿态、控制响应等关键参数,通过对比分析,全面、定量评估了风场扰动对惯性/GPS导航系统的影响效应。结果表明:风场扰动对于无人机惯性导航系统具有较大的影响,所产生的积累误差随时间增加逐步增大,相比而言,基于GPS的控制/导航系统具有较好的适应性和鲁棒性。  相似文献   

17.
对岳阳洞庭湖大桥中塔塔顶风场和风压进行现场实测,得到了桥塔塔顶风压和风速、风向时程.分析了风场特性参数、塔顶风压分布、平均风压系数和脉动风压系数的变化规律.分析结果表明:迎风面各点平均风压系数变化趋势一致,迎风面脉动风压系数较大,背风面脉动风压系数相对较小,在同一面上脉动风压系数差别较小;塔顶周围风场平均湍流度较小且脉动风压系数是风场湍流度的2~3倍.  相似文献   

18.
两种测风仪的动态比对试验及分析   总被引:2,自引:0,他引:2       下载免费PDF全文
针对超声波测风仪的不断应用,在自然风场条件下实施了超声波测风仪和现有自动气象站机械旋转式测风仪的动态比对试验。通过对风向风速的采集数据进行处理分析,总结了超声波测风仪和机械旋转式测风仪的动态性能。试验结果表明,2种测风仪的2,10min平均值可比较性偏差小于瞬时值;随着风速的增大,风速值的可比较性系统偏差向负向漂移,风速值的标准偏差增大,风向值的标准偏差减小。造成2种测风仪测量结果差异的原因主要是系统惯性特征、风场的自身湍流特性以及测风仪结构的不同造成流场特性的变异。  相似文献   

19.
环境风洞的模拟技术研究   总被引:1,自引:0,他引:1  
在环境风洞中模拟大气边界层是大气污染对流扩散试验研究的前提.根据环境风洞污染扩散试验的特点,通过试验调整大气边界层模拟装置,实现了在环境风洞中模拟部分大气边界层,并通过湍流结构确定了模拟比尺,当大气边界层得到正确模拟时,在环境风洞中模拟污染扩散和在大气边界层中的实际情形相似。  相似文献   

20.
【目的】探究戈壁地表野外风场不同高度风速脉动特征,为进一步湍流情况下风蚀研究奠定基础。【方法】2015年春季在新疆卡拉贝利工程区实测了戈壁地表不同高度瞬时风速,利用统计学方法(标准差、曲线估计等)从风速脉动和脉动强度、湍流度,以及三者与风速之间的关系等角度分析戈壁地表风速脉动特征。【结果】不同高度的瞬时风速和风速脉动在时间序列上变化非常复杂,但变化趋势一致。大风时段(0~50 min),风速脉动幅度非常大,最大接近6 m/s,但90%以上集中在Symbol|A@0~3Symbol|A@ m/s。风速脉动幅度随风速增强而增大,随距地表高度增加而增大。风速脉动概率分布符合高斯分布。不同高度的风速脉动强度与风速均呈一元线性关系,风速越大,风速脉动强度越大。风速脉动强度最大值2.41 m/s。在距地表0~2 m高度内,湍流度在0.14~0.21之间变化,平均约为0.17,湍流强度较高,此高度内湍流度与高度、平均风速无明显关系。【结论】戈壁地表风速脉动具有非平稳性,随风速增强而增大,尤其是大风天气下研究风蚀不能忽略风速的脉动性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号