首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
热轧带钢轧后冷却控制系统优化   总被引:1,自引:0,他引:1  
为提高热轧带钢超快冷出口温度和卷取温度控制精度,针对超快冷生产调试过程中出现的问题,对轧后冷却控制系统进行了优化.针对超快冷出口纵向温度偏差较大的问题,提出超快冷换热系数多点自学习方法;采用有限差分方法,分析带钢超快速冷却后的返红现象,并在此基础上提出一种超快冷出口返红补偿方法;提出了对进入冷却区的带钢样本段进行温度再计算的方法,来消除速度波动对轧后冷却温度控制精度的影响.现场应用结果表明,优化后超快冷出口温度和卷取温度控制精度均明显提高.  相似文献   

2.
热连轧带钢终轧温度的影响因素   总被引:2,自引:2,他引:2  
在传统传热模型基础上开发了带钢热连轧精轧温度控制模拟软件,系统地分析了穿带速度、带钢粗轧出口温度、带钢机架间厚度、水冷换热系数和工作辊材质等7种因素对带钢精轧出口温度的影响规律;确定了影响带钢终轧温度的主要因素;使用现场实测数据对模拟软件计算精度进行了检验,表明开发的精轧温度控制模拟软件计算精度较高.为建立高精度热连轧带钢温度在线控制模型提供了理论依据.  相似文献   

3.
为了提高热轧带钢卷取温度控制精度,针对热轧带钢轧后冷却过程非线性、强耦合性等特性,建立了具有非线性结构特征的热轧带钢轧后冷却过程控制的温度数学模型,并对热轧带钢轧后冷却过程卷取温度的设定策略进行了研究,同时在该模型基础上开发了系统软件,通过现场实际应用对模型功能进行了验证.结果表明,该冷却数学模型的卷取温度设定计算结果...  相似文献   

4.
热连轧带钢终轧温度控制样本跟踪策略   总被引:2,自引:1,他引:2  
为了加强前馈控制在带钢终轧温度控制中的作用,提高机架间喷水冷却控制精度,分析了带钢在机架间运行过程中的速度变化规律,将带钢在精轧机架间的冷却过程划分为多个冷却计算单元,阐述了机架间微跟踪策略的原理,给出了合理的通条带钢机架间微跟踪方法.使用实验室已开发的热带终轧温度模拟运行软件,结合国内某厂现场数据,进行了机架间温度控制模拟计算,计算结果优于现场实测数据.  相似文献   

5.
针对X80管线钢超快冷生产过程,基于传热学基本理论,建立了超快冷温度控制模型.通过对带钢超快冷过程温度场模拟,开发了X80管线钢超快冷控制策略,得出超快冷以均匀模式开启初始组态并采用正向增开策略有利于超快冷精度的提高及带钢芯表温差的减小.针对工艺条件波动对控制精度的影响,开发了超快冷自适应系统,实现了带钢超快冷出口温度实时及卷间修正.现场应用取得良好效果,为控冷工艺的实施提供支撑.  相似文献   

6.
针对热轧带钢超快速冷却过程温度控制,通过建立带钢冷却过程中的空冷、水冷温降模型,采用前馈、反馈与自适应相结合的温度控制策略,提高带钢的中间温度和卷取温度的控制精度,并应用于热轧带钢生产线。应用效果表明,带钢轧后温度控制达到了较高的精度,并有效地提高了带钢的力学性能。  相似文献   

7.
对热轧板带钢超快速冷却设备作了简要介绍.通过带钢轧制过程参数耦合控制及冷却水精度设定,使冷却水流量快速调节实现目标值±0.5m3/h的偏差.根据热轧生产工艺制度要求,对超快速冷却过程建立温度计算数学模型.通过控制系统功能间的最优化设计,采取合理的冷却策略,使中间温度及卷取温度控制精度达到目标值±15℃范围之内,使热轧板带钢超快速冷却工艺逐步稳定合理.系统投入使用后,具有高稳定性、高可靠性、高温度命中率,显著提高了带钢产品的质量和性能.  相似文献   

8.
卷取温度是影响带钢组织性能的重要工艺参数.在生产实践中,如何提高厚规格带钢卷取温度的控制精度是一个难点.针对厚规格带钢在层流冷却过程中的工况特点,提出了温度场计算模型和对流换热系数模型的改进方法,并开发了一种全新的基于相似策略的自适应模型,以改善卷取温度前馈控制效果.经现场应用证明,本文提出的方案能有效提高厚规格带钢的卷取温度控制精度,其中厚度大于12 mm的带钢平均命中率可达到94.9%.  相似文献   

9.
热轧带钢轧后冷却控制及其自学习方法   总被引:2,自引:0,他引:2  
热轧带钢轧后冷却过程中卷取温度的控制精度是保证带钢表面质量和板形良好的一个关键因素,因此温度控制精度的核心是冷却过程控制模型的建立,同时新的数学模型应该具有自学习功能以提高控制精度.以此为出发点,建立了具有非线性结构特征的热轧带钢冷却过程控制的数学模型,并对新模型的自学习能力进行了研究,使该模型能够不断地修正其关键参数以提高温度控制精度,从而增强了模型的自适应性.通过对该冷却过程数学模型的现场实际应用,验证了该冷却数学模型的卷取温度控制能够达到较高的精度,为提高带钢产品质量奠定了基础.  相似文献   

10.
在热轧带钢生产过程中,卷取温度是影响成品带钢性能的重要参数之一,其精度的高低对带钢质量至关重要.为保证产品具有良好的性能,采用层流冷却装置对热轧后的板带进行冷却控制,喷水系统的设定是层流冷却过程控制的关键.在冷却过程中带钢的温度不能在线连续检测,其过程具有强非线性和时变性,而且在冷却过程中存在相变,因此难以建立精确的数学模型去描述这一冷却过程.随着带钢厚度,精轧出口温度和轧制速度的变化,单独的前馈/反馈控制很难满足高精度的温度控制需要.在本文的研究中,一系列层流冷却控制策略被采用,包括前馈/反馈控制,自适应算法,以及控制带钢整体温度的均匀性策略.实践应用表明这些控制策略得到很好的检验,能有效地提高卷取温度的控制精度和均匀性.  相似文献   

11.
为了保证CSP热轧双相钢后段超快速冷却生产的稳定及产品组织的均匀性,需实现带钢生产过程中冷却水压力的高精度控制.结合包钢CSP后置超快冷设备和工艺特点,针对带钢冷却过程中集管压力波动问题,分别设计了动力泵压力闭环与溢流阀模糊控制的联合控制法及动力泵压力闭环与溢流阀压力闭环联锁控制法.实际应用效果表明,采用该控制方案,带钢冷却过程中头尾段集管压力控制在0.85±0.05 MPa,带钢中间段集管压力控制在0.85±0.01 MPa,实现了低成本热轧双相钢后段超快冷过程供水压力的高精度控制,很好地满足了该厂CSP热轧双相钢的生产需求.  相似文献   

12.
基于热连轧生产线开发了X65管线钢超快冷新工艺,系统表征了该工艺下实验钢的微观组织特征,并进一步讨论了其强化机制.结果表明,超快冷下X65管线钢微观组织为细小针状铁素体(AF)+准多边形铁素体(QPF)+M/A岛+弱化珠光体(DP)混合组织,有效晶粒尺寸为2.93μm,大角晶界百分比为31.5%;实验钢组织亚结构为细小的块状铁素体,铁素体尺寸分布在200~1000nm;在铁素体基体上析出了大量尺寸<10nm的Nb(C,N)粒子;实验钢各项力学性能均满足API SPEC 5L标准要求.超快冷工艺下X65管线钢的主要强化机制为细晶强化、固溶强化、位错强化及纳米析出强化的耦合强化,其中纳米析出强化强度贡献值为96.1MPa.  相似文献   

13.
介绍了热轧中轧件组织与性能软测量系统的组成和功能,讨论了开发软测量系统所必要的辅助变量选择和数据的预处理方法.通过对热轧过程中的工艺机理分析,并结合生产现场的控制要求,采用机理模型和人工神经网络相结合的方法建立了组织性能软测量系统的架构,并使用机理模型计算得到的微观组织和轧件的化学成分作为人工神经网络的输入变量,规范了人工神经网络的层次结构.在软测量系统的应用过程中,利用校正模型的短期和长期自学习方法,使系统的测量精度满足在线检测要求.  相似文献   

14.
为了提高热轧带钢头部终轧温度命中率,以及确定合理的机架间喷水冷却制度,结合带钢热轧过程温度数学模型,开发了精轧区温度模拟计算软件·对多种不同规格产品进行了离线模拟计算,模拟计算结果与实测结果吻合较好,表明模型具有较高的精度·在温度模拟计算的基础上,给出了终轧温度设定策略·对两种截然不同的机架间喷水冷却阀门开启逻辑做了计算分析,结果表明,逆向开启机架间喷水冷却阀门,顺向关闭阀门,能以较少的喷嘴开启数达到终轧温度目标范围,并且可以节约能耗·  相似文献   

15.
以含Nb微合金化试验钢为研究对象,通过3个不同精轧温度区间的轧制+层流冷却、空冷、超快冷的TMCP工艺获得了含有铁素体、贝氏体、马氏体以及少量残余奥氏体的显微组织.分析了控轧温度区间对含Nb微合金化试验钢显微组织和力学性能的影响.结果表明,在控冷工艺参数相近的情况下,随着精轧开轧温度和终轧温度的降低,试验钢的抗拉强度减小,屈服强度、延伸率和强塑积增大.其中采用850~800℃的温度区间精轧+层流冷却、空冷、超快冷的TMCP工艺时,试验钢的屈服强度、延伸率和强塑积分别达到了513MPa,35%和25235MPa.%的最大值.  相似文献   

16.
一维弹道修正引信弹道修正策略分析   总被引:1,自引:1,他引:0  
针对一维弹道修正引信阻力机构增阻能力有限的问题,采用概率与数理统计方法,以落入指定幅员区域弹丸数量最多为原则,对一维弹道修正弹药所需提前瞄准量、最大射程修正量进行分析. 研究结果表明,采用只对部分弹丸进行修正,提前瞄准量是所需最大射程修正量的1/2,且为无修正弹丸落点纵向误差标准差2倍左右时,修正策略为最佳选择. 以某155 mm榴弹对象,进行蒙特卡洛打靶仿真分析,验证了该修正策略的正确性. 该修正策略能以较小的提前瞄准量及所需最大射程修正量,使射程精度得到最大程度的改善,特别适用于阻力机构增阻能力有限的一维弹道修正引信.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号