首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, un-der the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.  相似文献   

2.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH_2 + 10wt%LaH_3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH_3 and NbH upon dehydriding of MgH_2. By contrast, pure MgH_2, an MgH_2 + 20wt%LaH_3 composite, and an MgH_2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, under the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH_2 + 10wt%LaH_3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH_2. The introduction of LaH_3 and NbH was beneficial to the hydrogen storage performance of MgH_2.  相似文献   

3.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, under the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.  相似文献   

4.
In this work,LiBH_4–20 wt%PP composite was prepared by ball-milling with as-synthesized hierarchical pyrolysis polyaniline(PP)and LiBH_4,and the hydrogen sorption performance as well as catalytic mechanism of the composite was studied.It is found that the onset desorption temperature of the composite decreases to 75°C,almost 235°C lower than that of the milled LiBH_4.Moreover,the composite could release 4.1 wt%H_2and rehydrogenate a total of 4.4 wt%H_2when the temperature raiseds up to 400°C,showing an outstanding reversibility,which even 3.9 wt%H_2can be kept after five cycles.Through scanning electron microscopy(SEM)observation and X-ray diffraction(XRD)analysis,we found that the PP surface forms some nanoholes after hydrogenation-dehydrogenation cycles,which leads to the confinement of some LiBH_4in the PP nanoporous structure,therefore,the hydrogen sorption kinetics and reversibility are significantly enhanced.In addition,we also found the oxygenic groups of the PP can react with LiBH_4forming LiBO_2and Li_3BO_3,where the containing Li–B–O bonds loaded in the porous structure of the PP catalyze the hydrogenation reaction of LiBH_4.  相似文献   

5.
In this work, Mg-based hydrogen storage composites with an initial 100-x: x (x=25, 32.3, 50, 66.7) of Mg:Ni molar ratio were prepared by HCS+MM and their phase compositions and electrochemical performances were investigated in detail. The results show that the composites with desirable constituents can be achieved by adjusting the molar ratio of the starting materials in the HCS process. Particularly, the HCS product of Mg67.7Ni32.3 consists of the principal phase Mg2NiH4 and minor phase Mg2NiH0.3. The dominate phase varies from Mg2NiH0.3 and MgH2 for the Mg enriched sample (x<32.3) to MgNi2 and Ni for the Ni enriched sample (x>32.3). The MM modification not only brings about grain refinement of the alloys, but also leads to phase transformation of part Mg2NiH4 to Mg2NiH0.3 in the Mg67.7Ni32.3 sample. Electrochemical tests indicate that each sample can reach its maximum discharge capacity at the first cycle. Mg67.7Ni32.3 displays the highest discharge capacity as well as a superior electrochemical kinetics owing to its excellent H atom diffusion ability and lower charge-transfer resistance. The Mg67.7Ni32.3 provides the most optimized Mg/Ni atomic ratio considering the comprehensive electrochemical properties of all samples.  相似文献   

6.
以可溶性聚酰亚胺为基质 ,经乙酸修饰后的钛酸丁酯为TiO2 溶胶前体 ,NMP为共溶剂 ,采用溶胶凝胶法可制得PI/TiO2 纳米复合膜。采用XPS、TEM和气体透气性能测试等手段 ,对复合膜的结构和H2 分离性能进行了表征。结果表明 ,复合膜中钛酸丁酯已转化为TiO2 ,PI与TiO2 两相结合完好。TiO2 以颗粒状均匀分布在PI基质中 ,其颗粒粒径约为 1 0nm。复合膜的H2 ,N2 和CH4 透气系数随着TiO2 含量的增加而明显增加。当TiO2 含量为2 2 3 %时 ,对H2 的透气系数为 1 4 .1Barrer,对H2 /N2 和H2 /CH4 的分离系数分别为 1 87.5和 1 4 3 .2 ,因此 ,该复合膜是一种较为理想的H2 分离和回收膜材料  相似文献   

7.
The Mg-9.3 wt% (TiH1.971-TiH)?0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR) approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs) were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol?1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol?1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.  相似文献   

8.
为了改善硼氢燃料的能量输出特性,提高其作为推进剂及火炸药添加剂的燃烧效率,使用溶剂-非溶剂法制备了十氢十硼酸双四乙基铵/纳米铝含能复合物,并对其表面形貌、比表面积、热性能及气体分解产物进行了研究。结果表明,使用溶剂-非溶剂方法可制备具有良好分散性的十氢十硼酸双四乙基铵/纳米铝复合物,并能极大的减少纳米铝的团聚。复合物的比表面积为7. 06 m~2/g,远大于混合物的0. 20 m~2/g。BHN-10/纳米铝复合物在分解过程中可形成一种熔融分解型的中间产物,分解过程分为两个阶段,两阶段的分解温度分别为285. 1℃和304. 4℃,在形成BHN-10/纳米铝复合物后分解温度提前,第一分解放热峰提前到262. 0℃,第二分解放热峰提前到298. 8℃。分解气体产物主要为乙烯、乙烷、氨气和氢气等具有高热值的可燃性小分子气体。  相似文献   

9.
The development of hydrogen energy is hindered by the lack of high-efficiency hydrogen storage materials. To explore new high-capacity hydrogen storage alloys, reversible hydrogen storage in AB2-type alloy is realized by using A or B-side elemental substitution. The substitution of small atomic-radius element Zr and Mg on A-side of YNi2 and partial substitution of large atomic-radius element V on B-side of YNi2 alloy was investigated in this study. The obtained ZrMgNi4, ZrMgNi3V, and ZrMgNi2V2 alloys remained single Laves phase structure at as-annealed, hydrogenated and dehydrogenated states, indicating that the hydrogen-induced amorphization and disproportionation was eliminated. From ZrMgNi4 to ZrMgNi2V2 with the increase of the degree of vanadium substitution, the reversible hydrogen storage capacity increased from 0.6 ?wt% (0.35H/M) to 1.8 ?wt% (1.0H/M), meanwhile the lattice stability gradually increased. The ZrMgNi2V2 alloy could absorb 1.8 ?wt% hydrogen in about 2 ?h ?at 300 ?K under 4 ?MPa H2 pressure and reversibly desorb the absorbed hydrogen in approximately 30 ?min ?at 473 ?K without complicated activation process. The prominent properties of ZrMgNi2V2 elucidate its high potential for hydrogen storage application.  相似文献   

10.
通过湿法以仲钨酸铵和硝酸铜为原料制备了Cu的质量分数为10%、平均粒径约为250 nm的超细W-Cu复合粉末.用扫描电子显微镜(SEM)和元素分析,结果表明:还原温度对粉末的形态和纯度具有显著作用.粉末经注射成型后制成的生坯在1300℃下、H2气氛中烧结120 min后,其相对密度可达99.37%,微观组织均匀,具有较高的热导率,可达217 W/(m·K)左右,室温到600℃范围下热膨胀系数在6.0×10-6~7.8×10-6K-1之间.  相似文献   

11.
The DBSA-PANI-Fe composite powder with 50wt% of Fe nanoparticles was prepared by mechanically mixing the DBSA-doped polyaniline powder and Fe nanoparticles. The composite powder was compacted to pellets and the pellets were annealed in vacuum at 443,493,543, and 593 K for 60 and 120 min. The conductivity of the pellet increases markedly with increasing the annealing temperature up to 493 K, and then decreases with further increasing the annealing temperature. When the pellet was annealed at 493 K for 60 min, the increment of conductivity reaches a maximum value, and the conductivity is 2.6 times as large as that of the pellet unannealed. The conductivities of the pellets annealed under the conditions of 543 K/120 min, 593 K/60 min, and 593 K/120 min are lower than the conductivity of the pellet unannealed. For all the pellets, the variation in conductivity with temperature reveals that the charge transport mechanism can be considered to be 1-D variable-range-hopping (1-D VRH). The composite pellet shows a magnetic hysteresis loop independent of the annealing condition. The saturation magnetization is about 5.4×104 emu/kg. The saturation field and the coercivity are estimated to be 4.38×105 and 3.06×104 A/m, respectively. The crystalline structure ofFe nanoparticles in the composites does not change with the annealing condition. The annealing condition cannot destroy the polymer backbones.  相似文献   

12.
氨合硼氢化钛是一类放氢温度适宜的高容量储氢材料,但已报道的通过球磨法制备的氨合硼氢化钛通常含有质量分数42%以上的LiCl杂质,降低了体系总含氢量的同时也为氨合硼氢化钛本征放氢性能的表征带来了困难.因此,纯氨合硼氢化钛的制备和性能表征十分必要.本文以钛酸四异丙酯、乙硼烷、四氢呋喃和NH_3为初始原料,通过先制备前驱体Ti(BH_4)_3·2THF,然后再氨化的二步反应首次成功合成纯Ti(BH_4)_3·5NH_3,并对前驱体和氨合硼氢化钛的组成、结构和放氢性能进行系统地研究.结果表明,前驱体Ti(BH_4)_3·2THF属于斜方晶系,Pbcn空间群,且在室温下能稳定存在,是制备氨合硼氢化钛的良好前驱体;纯Ti(BH_4)_3·5NH_3具有良好的放氢性能,于75℃开始放氢,至200℃释放质量分数约10%的氢气.  相似文献   

13.
The effect of water on the electrical conductivity of olivine   总被引:4,自引:0,他引:4  
Wang D  Mookherjee M  Xu Y  Karato S 《Nature》2006,443(7114):977-980
It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals--for example, plastic deformation and melting temperature--and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth's mantle by direct sampling provides only a limited data set from shallow regions (<200 km depth). Geophysical observations such as electrical conductivity are considered to be sensitive to water content, but there has been no experimental study to determine the effect of water on the electrical conductivity of olivine, the most abundant mineral in the Earth's mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873-1,273 K for water contents of 0.01-0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations suggests that the typical oceanic asthenosphere contains approximately 10(-2) wt% water, whereas the water content in the continental upper mantle is less than approximately 10(-3) wt%.  相似文献   

14.
系统研究了Ti9.6V86.4Fe4储氢合金中掺入10%(质量分数)的Ti0.9Zr0.1Mn1.5进行复合球磨对其相结构及储氢性能的影响.X射线衍射分析表明,Ti9.6V86.4Fe4铸态合金具有单一的体心立方(BCC)结构固溶体相,当添加10%的Ti0.9Zr0.1Mn1.5复合球磨后,复合物由BCC主相和C14型Laves第2相组成.扫描电子显微镜及X射线能量色散谱仪分析表明,Ti9.6V86.4Fe4合金粉颗粒表面包覆了一层Ti0.9Zr0.1Mn1.5微粒.储氢性能测试表明,Ti9.6V86.4Fe4中掺入10%的Ti0.9Zr0.1Mn1.5复合球磨后,虽然室温最大吸氢量(质量分数)从3.86%略微降低至3.61%,但其有效储氢量(质量分数)由2.01%提高到2.11%,活化性能和P-C-T曲线平台特性都得到了明显改善.  相似文献   

15.
室温全固态氢传感器研究   总被引:2,自引:0,他引:2  
以Sb2O5-H2O-H3PO4 复合氧化物为固态电解质 ,利用混合压膜和蒸发的方法制作传感催化电极和参考电极 ,研制了室温全固态电解质氢气传感器。传感器的组成为:空气 ,Pd(或Ag) |Sb2O5-H2O-H3PO4 |Pd ,H2 (在N2 或空气中) ,考察了传感器的电位响应值与氢气体积分数之间的关系 ,以及温度对氢气传感性能的影响;通过测绘极化曲线来研究其应答机理,从而分析传感器电位响应值不同于能斯特值的原因——敏感电极上混合电势的形成。  相似文献   

16.
The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min?1;H2:2 L·min?1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model.  相似文献   

17.
The effect of Mo-addition on hydrogen storage and low-temperature electrochemical performances of La-Mg-Ni-Co-Al alloys is investigated. The alloys were synthetized via vacuum induction melting followed by annealing treatment at 1123 K for 8 h. The major phases in the annealed alloys are consisted of (La, Mg)2Ni7, (La, Mg)5Ni19 and LaNi5 phases. Mo-addition facilitates phase transformation of LaNi5 into (La, Mg)2Ni7 and (La, Mg)5Ni19 phases. Hydrogen absorption/desorption PCI curves indicates that the hydrogen storage capacity of the alloy increases remarkably with the addition of Mo. Furthermore, the La0.75Mg0.25Ni3.05Co0.2Al0.05Mo0.2 alloy shows excellent hydriding/dehydriding kinetics with a higher capacity, requiring only 100 s to reach its saturated hydrogen capacity of 1.58 wt% at low temperature of 303 K, and releasing 1.57 wt% hydrogen within 400 s at 338 K. Electrochemical experiments manifest that the Mo-added alloy electrode has perfect activation properties and the maximum discharge capacity. The low-temperature dischargeability shows that the La0.75Mg0.25Ni3.05Co0.2Al0.05Mo0.2 alloy exhibits the excellent low-temperature discharge performance, and the maximum discharge capacity is improved from 231.0 to 334.6 mAh/g at 253 K. The HRD property of the alloy electrode is enhanced, suggesting that Mo enhances the kinetic ability at low-temperature.  相似文献   

18.
利用高压容积法、辅以卸压升温脱附排水法,测定金属钾修饰多壁碳纳米管(K~0-MWCNTs)对H_2的吸附储存容量。结果表明,在室温(~25℃)、~7.25MPa实验条件下其对氢的吸附储存容量可达3.80%(质量百分数);室温下卸至常压的脱附氢量为3.36%(占总吸附氢量的~89%),后续升温(升至673K)的脱附氢量为0.41%(占总吸附氢量的~11%)。  相似文献   

19.
采用高能机械球磨法制备了Mg 10%TiFe1-xCrx(x=0,0.3)复相储氢合金,对比研究了球磨复相合金和球磨纯镁的微结构与储氢性能.研究结果表明:在纯Mg中添加质量分数为10%的TiFe1-xCrx(x=0,0.3)进行复合球磨,可以明显提高其吸放氢性能;在相同温度条件下,x=0.3的含铬复相合金具有最佳的吸放氢性能,其中在613 K下的吸氢容量(氢的质量分数)为7.14%,放氢容量(氢的质量分数)为6.91%;在493~573 K的较低温度下,含铬复相合金表现出更好的放氢动力学性能.通过XRD、SEM、EDS分析研究表明,TiFe1-xCrx(x=0,0.3)合金粉以细小颗粒的形式分散镶嵌在镁粉基体上成为催化活性点,改善了体系的吸放氢性能.  相似文献   

20.
高的氢压和反应温度有利于片硼酸钠与镁和氢反应生成硼氢化钠,但温度接近镁的熔点时不利于硼氢化钠的生成。在反应物中添加铁、镍和钴将加速硼氢化钠的生成,而铜的加入却阻碍硼氢化钠的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号