首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
气雾立体栽培是一种新型农业无土栽培技术,该技术有望让极地科考队员吃上新鲜蔬菜,目前已在南极中山站展开初期调研试验。但"南极温室"需要日夜燃烧燃油加热来抵御极地严寒、能耗大、成本高。针对该问题,展开南极中山站气雾立体栽培室风光互补供电系统研究。依据南极中山站的气候特点研究风光互补供电可行性;分析负载用电特性,优化配置供电系统容量;应对中山站特殊的极昼、极夜现象和低温环境,提出供电系统能量管理和最大功率追踪控制策略;利用MATLAB对低温下风力发电系统、光伏系统最大功率追踪控制策略进行仿真。结果表明在中山站可用风光互补给气雾立体栽培室供电,所配置供电系统容量可靠,能量管理及最大功率追踪控制策略适用于中山站低温环境。  相似文献   

2.
气雾立体栽培是一种新型农业无土栽培技术,该技术有望让极地科考队员吃上新鲜蔬菜,目前已在南极中山站展开初期调研试验。但"南极温室"需要日夜燃烧燃油加热来抵御极地严寒、能耗大、成本高。针对该问题,展开南极中山站气雾立体栽培室风光互补供电系统研究。依据南极中山站的气候特点研究风光互补供电可行性;分析负载用电特性,优化配置供电系统容量;应对中山站特殊的极昼、极夜现象和低温环境,提出供电系统能量管理和最大功率追踪控制策略;利用MATLAB对低温下风力发电系统、光伏系统最大功率追踪控制策略进行仿真。结果表明在中山站可用风光互补给气雾立体栽培室供电,所配置供电系统容量可靠,能量管理及最大功率追踪控制策略适用于中山站低温环境。  相似文献   

3.
风光互补发电系统作为一种绿色能源可独立对外部供电,无线电能传输(wireless power transfer)技术又提供了一种方便快捷的能量传输方式。结合两者的优点,将风光互补发电系统的输出作为WPT谐振电路的输入端,利用无线电能传输技术对负载供电,利用了绿色能源的同时又能节约电力运输成本。分析了磁耦合感应与磁耦合谐振之间的联系以及平面线圈频率分裂的相关因素,针对目前小型平面谐振无线充电设备随发射端和接收端距离的变化而产生传输波动的问题,在发射端采用XKT-408集成电路进行自动频率锁定,在发生频率分裂时调整线圈偏移角度可削弱两线圈的互感系数来抑制频率分裂现象,提高了接收线圈峰值电压。最后搭建了风光互补发电无线能量传输系统,在径向距离50 mm处可成功对负载充电,该模型为风光互补发电无线充电系统的应用提供了参考。  相似文献   

4.
小型风光互补发电系统匹配方式的研究   总被引:1,自引:0,他引:1  
崔啸鸣  乔燕军  韩晓磊 《科技信息》2011,(25):I0368-I0369
本文在收集选定地点风能和太阳能资源的条件下,根据分析典型牧户负载情况,在保证负载用电需求的条件下,确定合理的风光互补发电系统匹配方式。设计了系统主电路并对系统工况进行分析。通过设计表明,此种系统匹配方式能够满足选定负载的供电需求。  相似文献   

5.
基于风光互补发电无线电能传输系统的研究与设计*   总被引:2,自引:1,他引:1  
风光互补发电系统作为一种绿色能源可独立对外部供电,无线电能传输(Wireless Power Transfer)技术又提供了一种方便快捷的能量传输方式,本文结合两者的优点,将风光互补发电系统的输出作为WPT谐振电路的输入端,利用无线电能传输技术对负载供电,利用了绿色能源的同时又能节约电力运输成本。分析了磁耦合感应与磁耦合谐振之间的联系以及平面线圈频率分裂的相关因素,针对目前小型平面谐振无线充电设备随发射端和接收端距离的变化而产生传输波动的问题,在发射端采用XKT-408集成电路进行自动频率锁定,在发生频率分裂时调整线圈偏移角度可削弱两线圈的互感系数来抑制频率分裂现象,提高了接收线圈峰值电压。最后搭建了小光互补无线能量传输系统,在径向距离50mm处可成功对负载充电,该模型为基于风光互补发电无线充电系统的应用提供了参考。  相似文献   

6.
由于太阳能、风能的互补特性以及光伏发电、风力发电技术的日趋成熟,风光互补发电成为研究热点.文章分析了风力发电技术、光伏发电技术以及风光互补发电技术,设计了共直流母线式风光互补发电系统的整体结构,讨论了该拓扑结构的工作原理和控制策略,并利用PSCAD软件建立了风光互补发电的仿真模型,分别在外部环境不变与外部环境(风速、日...  相似文献   

7.
针对家用风光互补发电的特点和效率问题,采用高性能低功耗的AVR单片机为核心,设计了一种新型风光互补发电控制器,并提出了新型最大功率跟踪(MPPT)控制策略.仿真结果表明,该系统工作稳定,响应速度较快、能大大的提高的系统的发电效率.  相似文献   

8.
为了克服单一新能源发电具有转换效率不足、电能输出不稳定和新能源利用率较低等缺点,设计一款以风能、太阳能和海洋能等多能融合实时互补的发电系统,包括互补发电能源转换装置的设计、斩波电路、电能储能电路的设计和基于MATLAB(SIMULINK)的系统仿真验证。主要研究能源获取后进行的DC-DC斩波技术和充电技术。结果表明互补电能变换电路能够获取稳定的直流电压;直流母线通过逆变电路可以为后续的交流负载供电,同时可以通过充电电路给蓄电池供电,蓄电池采用分组管理的方式解决了过量充放电的问题并降低了充放电次数,蓄电池可以通过逆变为交流负载供电或者直接为直流负责供电,整个蓄电池储电部分达到了电能缓冲的目的。设计的新能源供电多能互补发电系统很好地解决了单一发电系统存在的问题,并给出了系统实现的完整方案,经过仿真验证系统能够实现新能源多能互补的发电目的,为新能源的有效利用提供了一个可行的途径。  相似文献   

9.
本文提出一种多能源智能调度系统,能够对风光互补发电系统进行统一调度,根据电网用电负荷的波动来控制并网功率,使电网的供电质量更可靠。首先介绍光伏发电原理及其并网系统的结构,进而介绍风光互补发电系统的工作状态,最后研究对多能源的调度在MATLAB/simulink环境下建立了多种能源仿真模型,引入模糊控制算法,仿真结果达到了预期的目标。  相似文献   

10.
风光储互补供电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景.目前随着人们对风光储互补发电技术认识的日渐提高和风光储互补发电技术的不断成熟,其应用领域也越来越广泛.太阳能供电系统因为应用地点受限较小,成为电力线路无法到达地域重要的补充供电系统.全程监控普及和推广更是将太阳能在交通行业的应用推到了一个全新高度.而太阳能及风光互补系统存在的大大小小的问题给人们带来很多烦恼,而有的案例则给人们造成了惨痛的教训.本论述主要对太阳能以及风光互补供电系统的配置方案以及稳定性进行了探讨,希冀对同行们起到一定的借鉴意义.  相似文献   

11.
针对孤岛下独立运行的直流微电网,为了更好的维持系统功率的供需平衡,快速平抑母线电压的波动。利用超级电容和蓄电池的互补特性设计混合储能系统,在下垂控制的基础上,通过增加二次补偿装置抑制负荷功率波动,从而实现直流微电网的精准控制,将系统划分成多个模式运行,通过利用所提的控制策略对各个模块进行联动控制,实现系统平滑的在多个运行模式下切换。完成直流微电网的源-荷-储协调优化控制。最后对其在MATLAB/Simulink上进行仿真实验,验证控制策略的有效性和可行性。  相似文献   

12.
与传统交流制式牵引供电系统相比,基于模块化多电平换流器的中压直流(medium voltage direct current based on modular multilevel converter, MMC-MVDC)牵引供电系统具有电能品质高、供电距离远以及便于分布式可再生能源系统和储能系统接入等诸多优势。针对传统下垂控制下MMC-MVDC牵引供电系统中存在的输出电压跌落、功率分配不平衡问题,提出一种变下垂控制策略。该方法在传统下垂控制中引入下垂扰动量和电压补偿量,利用一致性算法根据各所输出电流得到下垂扰动量实时动态调节下垂系数实现负载功率在各所之间的均匀分配,同时各所输出电压的平均值稳定在额定值附近且偏移量较小。该策略在保证电能质量的同时提高了牵引变电所容量的利用率,在负荷突变时该系统也能较快地重新达到稳态,具备良好的动态特性。最后,在MATLAB/Simulink中搭建了两牵引变电所模型,将提出的控制策略与传统下垂控制进行对比,仿真结果验证了该策略具备较好均流特性的同时能够基本无差地跟踪输出电压参考值,保证MMC-MVDC牵引供电系统的安全、稳定运行。  相似文献   

13.
为应对可再生能源出力间歇性对电能供需实时平衡带来的挑战,利用供给侧与需求侧相互配合的运营模式,进而提出考虑负荷聚合商参与的源荷合作博弈优化模型。首先,构建考虑负荷聚合商的源荷合作运行基本框架,以解决源侧可再生能源出力波动性带来的电能供需供应难题。其次,计及源侧发电成本、弃风成本,荷侧需求响应成本,构建源荷双侧支付函数模型;并以源荷合作运行总成本最低为目标函数,以保证各参与主体的运行经济性。再次,基于Shapley值分配法,提出合作运行联盟内源荷双侧的成本分配策略,从而保证合作运行联盟的稳定性。最后利用算例仿真验证所提源荷合作运行策略的可行性与有效性。结果表明:所提策略可减小负荷峰谷差、减少火电机组出力、提高可再生能源消纳量、降低源荷双侧运行成本,对系统的经济环境效益具有积极作用。  相似文献   

14.
针对船舶电力系统大负载、强耦合特点,应用陆上大电网并网逆变理论,研究新能源动力船舶供电系统中与同步发电机并联的逆变器下垂控制技术能否满足船舶电网要求。分析了逆变器拓扑结构,建立了数学模型,在此基础上确定由电压环、电流环和功率环组成的三环控制策略,并提出了控制器参数的设计方法。仿真结果表明,基于下垂控制技术的逆变器与同步发电机并联构成的供电系统,能够满足船舶的用电需求,可实现新能源动力船舶在负载波动工况下稳定运行。  相似文献   

15.
针对换流站采用传统下垂控制消纳不平衡功率时引起的直流电压偏差问题,提出一种改进的多点直流电压优化协调控制策略。将不平衡功率作为前馈补偿量注入到传统下垂控制中,通过平移下垂曲线来实现直流电压的准无差调节;根据换流站功率裕度,来合理设定各换流站的前馈补偿量;为避免不平衡功率过大而导致下垂控制换流站满载运行,将偏差控制引入到定有功功率换流站,协同下垂控制换流站消纳余下的不平衡功率。最后,基于PSCAD/EMTDC建立五端VSC-MTDC系统模型进行仿真,仿真结果表明,所提控制策略可以实现直流电压的准无差调节,优化了系统的潮流分布,提升了系统的运行稳定性。  相似文献   

16.
虚拟电厂是一种通过先进信息通信技术和软件系统,将分布式发电机组、储能系统、可控负荷、 电动汽车等分布式设备聚合优化并协调参与电力市场和电网运行的特殊电厂。 针对现阶段可再生能源产业的风力、光伏并网发电和优先消纳困难等问题,基于虚拟电厂强通信、高聚合的特性,提出了一种考虑供给与负荷转移的虚拟电厂调度策略,以虚拟电厂整体利润最优为目标函数,从供给侧与需求侧同时强化虚拟电厂的调度弹性。 其中供给转移通过储能设备实现,考虑蓄电池储能系统与氢能存储系统同时参与调度,发挥各自储能优势,负荷转移通过柔性负荷实现,并将所有柔性负荷分为短期、中期、长期 3 类来反映实际情况,以柔性负荷的负荷量与最晚调度时间为类别划分依据。 实验结果表明:储能设备及柔性负荷参与虚拟电厂调度,显著提高了虚拟电厂运行的强健性,增强了新能源的消纳水平,实现了“削峰填谷”的效果,并且在经济性上有着良好的表现。  相似文献   

17.
电动公交客车充电站容量需求预测与仿真   总被引:5,自引:0,他引:5  
以明确纯电动公交客车对充电站配电容量需求为目标,叙述了充电站电力负荷计算、预测的重要性及常用的电气负荷预测和计算方法,根据电动公交客车运行机制及动力电池充电功率需求变化特性建立了电动公交客车充电站容量需求数学模型,对影响电动公交客车充电站配电容量的因素进行了分析,仿真计算了等间隔和变间隔充电机制下充电站的配电容量需求,建立了定功率工况下电动公交客车车队的充电机制,为确定电动汽车实际充电运行机制和充电站容量需求提供了理论依据.  相似文献   

18.
现有的区域能源系统规划研究中缺乏科学有效的供能分区优化方法,且能源站的供能范围、数量和选址中未能考虑负荷密度特性问题,为此该文提出考虑负荷密度的区域能源系统供能分区优化设计方法。首先研究了负荷分布与能源站经济供能半径的关系,根据管网拓扑结构简化模型建立了负荷密度与能源站经济供能半径优化模型。进而基于推导得到的经济供能半径和负荷密度的特性关系,建立了以传统空调系统与区域能源系统的全寿命周期费用差值最大为目标函数的规划模型。最后通过案例仿真并与传统K-means聚类方法进行比较,结果表明该方法可使区域能源系统的能耗损失成本、管网投资成本和运维费用分别降低了22%,5.1%和2.1%。  相似文献   

19.
随着装备信息化的发展,各种仪器设备对电源容量的要求越来越高,而多模块并联是增加直流电源容量的主要途径之一。针对并联系统中由于单体特性不同造成的负载电流不平衡问题,分析了几种常用均流方法的优缺点,并采用最大电流均流法设计了均流控制策略,在电压电流双闭环控制基础上增加了一个均流环,形成一个三环控制系统。利用Matlab搭建了2个电源模块并联仿真模型,分别进行了有均流环和无均流环2种情况下的仿真,并进行了实验验证。实验结果表明该均流控制策略具有较好的均流效果。  相似文献   

20.
针对采用传统PI和比例谐振PR控制的并网逆变器对电网干扰信号的抑制能力较弱问题,提出了一种基于准PR控制策略的单相并网逆变器控制方案,并针对自行研制的一种可大规模用于家庭供电的体积小、成本低的单相非隔离5 kW逆变器进行了仿真研究和并网实验。从硬件和软件两方面阐述了逆变器的设计原理;采用Matlab软件中的S-Function函数进行了仿真分析,控制策略为准PR控制,将其与传统的PI和PR控制器进行了对比,并在仿真基础上用实验样机进行了实验验证。研究结果表明,所提出的准PR控制策略在消除稳态误差、提高网侧电流品质和抗电网干扰等方面,相较于PI和PR控制具有很大的优越性,不仅可以更好地实现无静差控制,且具有可扩展性。凭借准PR控制器的无静差特性,单相非隔离5 kW逆变器在家用供电系统中将具有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号