首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three metasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the present study. Eighty percents of these dates range from 1.7 Ga to 2.2 Ga with a peak at 1.8-2.0 Ga and twenty percents from 2.3 Ga to 2.7 Ga. The youngest detrital zircon is dated at 1724±19 Ma which is interpreted as the maximum depositional age of the metasedimentary rocks. Therefore, the age for the diagenesis and lithification of the original sedimentary rocks of the Longshoushan Group before the metamorphism must be younger than 1724±19 Ma. Comparison of the age histograms of these detrital zircons with the ages of the igneous rocks on the surrounding older massifs suggests that the sediments of the Longshoushan Group were most likely derived from the Alaxa Block and Tarim Craton. This implies that the affinity between Alaxa Block and Tarim Craton was strong and that they might have been a unified craton during middle-early Proterozoic time.  相似文献   

2.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The re- sults provide further constraints on the crustal formation and evolution history of NCC. Four 207Pb/206Pb age populations were obtained from 99 analyses, with clusters at ~3.40 Ga, 2.77―2.80 Ga, ~2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Ar- chean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ga detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77―2.80 Ga zircons make up a relatively small proportion and have the highest εHf (t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The ~2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at ~2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±23 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

3.
The volcanic rocks of the Xiong‘er Group occur widely in the southern part of the North China Craton, which mark the beginning of the cover in the southern part of the North China Craton. The age of the volcanic rocks is thus crucial to understand the tectonic regime and evolutionary history of the North China Craton in the Proterozoic age. Zircons from five volcanic rocks and intrusions were dated by U-Pb SHRIMP method. The results indicate that the Xiong‘er Group formed in 1.80--1.75 Ga of Paleo-Proterozoic. Since the Xiong‘er Group formed earlier than the Changcheng System, the earliest rocks in the Changcheng System is therefore assumed to be formed in 1.75 Ga. A thermal-tectonic event of ca. 1.84 Ga is indicated by new zircon U-Pb SHRIMP ages in the southern part of the North China Craton. The volcanic rocks of the Xiong‘er Group thus represent the initial magmatism of the Paleo-Proterozoic breakup of the North China Craton. Numerous inherited zircons in the volcanic rocks mainly formed in ~2.20 Ga, indicating that the source magma of the volcanic rocks may be derived from the ~2.20 Ga crust, or from a mantle magma with significant contamination of the ~2.20 Ga crust.  相似文献   

4.
Origin and tectonic evolution of the Qilian Precambrian basement on NW China were investigated using zircon U-Pb ages with collaborating stratigraphic and paleontological evidence. Zircon grains were separated from two schists, two granitic gneisses and one mylonized gneiss and dated with SHRIMP. Seventy percent of sixty-one detrital zircon ages from two schists ranges from 0.88 Ga to 3.09 Ga, mostly within 1.0 Ga to 1.8 Ga with a peak at 1.6 Ga to 1.8 Ga, and twenty percent varies from 2.0 Ga to 2.5 Ga. A few falls in the Archean and Neoproterozoic periods. The two granitic gneisses were dated 930±8 Ma and 918±14 Ma, whereas the mylonized granitic gneiss was dated 790±12 Ma. These ages represent two periods of magmatisms, which can be correlated with the early and late stages of magmatisms associated with the Jinningian movement on the Yangtze Blocks. The results from this and previous studies indicate that the ages of the Precambrian detrital zircons from the Qilian Block are widely distributed in the Proterozoic era, distinct from the North China Block which was stable in the Neo-Mesoproterozoic era. By contrast, the age histograms of the detrital zircons from the Qilian Block is similar to those from Precambrian basement of the Yangtze Craton. Therefore, it is suggested that the Qilian Block had a strong affinity toward the Yangtze Craton and might belong to the supercontinent Gondwana in the Neoproterozoic time. This inference is supported by Nd model age (TDM), stratigraphic, and paleontological evidence. It is further considered that the Qilian Block was rifted from the supercontinent Gondwana during late Sinian to form an isolated continent in the Proto-Tethyan Ocean, moving towards the Alaxa Block in the North China Craton. The part of Proto-Tethyan Ocean between the Qilian and Alaxa Blocks should correspond to the so-called Paleo-Qilian Ocean. Following the closure of the Paleo-Qilian Ocean in the early Paleozoic, the Qilian Block collided with the Alaxa Block to form the North Qilian Orogenic Belt. Based on this tectonic explanation, the North Qilian ophiolites should represent parts of lithosphere from the Proto-Tethyan Ocean. Lithological and geochronological evidence also indicates that the Qilian Block underwent continental reactivation possibly induced by the deep northward subduction of the North Qaidam Block in early Paleozoic time.  相似文献   

5.
Miao  Laicheng  Fan  Weiming  Zhang  Fuqing  Liu  Dunyi  Jian  Ping  Shi  Guanghai  Tao  Hua  Shi  Yuruo 《科学通报(英文版)》2004,49(2):201-209
Located in the eastern portion of the Xing'an-Mongolian Orogenic Belt (XMOB), the Xinkailing-Kele complex has previously been considered to be Precambrian metamorphic rocks, mainly according to its relatively high metamorphic grade. Our filed observation, however, revealed that the complex is composed mainly of metamorphic rocks (Kele complex), tectono-schists ("Xinkailing Group"), and granitoids (Xinkailing granitic complex). Dating on these rocks using advanced SHRIMP zircon U-Pb technique indicates that: (1) Biotite-plagioclase gneiss from the Kele complex has a protolith age of 337±7 Ma (2σ) and a metamorphic age of 216±3 Ma (2σ); (2) the tectono-schist of the "Xinkailing Group" gave a magmatic age of 292±6 Ma (2σ), indicative of felsic volcanic protolith of the schist formed in late Paleozoic time; and (3) the Menluhedingzi and Lengchuan granites of the Xinkailing granitic complex were emplaced at 167±4 (2σ) and 164±4 Ma (2σ), respectively. These results suggest that the Xinkailing-Kele complex is not Precambrian metamorphic rocks and the so-called Precambrian "Nenji-ang Block" does essentially not exist. In combination with regional geological data, we propose that the Kele metamorphic complex is likely related to a collisional tectonism that took place in Triassic time, as indicted by its metamorphic age of 216±3 Ma. The Xinkailing granitic complex was em-placed along the collisional zone during Mid-Jurassic time, likely in a post-orogenic or anorogenic setting.  相似文献   

6.
Whether or not Grenvillian orogeny occurred in South China still remains highly controversial because high-quality,discriminating data are lacking,and therefore,the key to resolve this matter is to find datable volcanic and/or sedimentary rocks related to Grenvillian orogeny. Such rocks are apparently present in the Fuliangpeng Member from the lower-middle part of Kunyang Group in central Yunnan; here the unit is more than 100 m thick and consists of andesitic ignimbrite,tuffite,terrigeous clastic rocks and carbonates. These volcanic rocks,developed south of the Sibao fold-thrust belts,represent the earliest calc-alkaline volcanic activity in late Precambrian time from central Yunnan and are coeval with both a change in sedimentary facies from detritus to carbonates and the beginning of seismite development elsewhere. Two samples for SHRIMP analysis were collected from this volcanic unit. Sample G3-29-2,from the bottom of Fuliangpeng Member,is an ignimbrite,and about 100 zircon crys-tals recovered from it have euhedral shapes and display relatively simple sector zonation under cathodoluminescent (CL) imaging,suggesting a magmatogenic origin. Twenty-five of the zircons were analyzed and a weighed-mean U-Pb age of 1032±9 Ma was obtained. Sample G3-29-3 from uppermost part of Fuliangpeng Member is a tuffite,and many rounded,evidently detrital zircons were recovered. Nine of these zircons were analyzed,and the oldest single-grain U-Pb zircon age is 1938±26 Ma,im-plying that Paleoproterozoic basement developed in Cathaysia. The dating result,combined with the geotectonic research on the Fuliangpeng Member,leads us to conclude that late Mesoproterozoic orogenic volcanic activity occurred in the western part of South China,and that the related collision of Yangtze and Cathaysian cratons was an integral part of the assembly of Rodinia.  相似文献   

7.
The architecture and growth history of Precambrian crustal basements in the Central Tianshan Block play a key role in understanding the tectonic evolution of the Chinese Tianshan Orogenic Belt.In this study,we present precise LA-ICP-MS zircon U–Pb dating and LAMC-ICPMS zircon Hf isotopic data for two granitic gneisses from Alatage area in the Central Tianshan Block.The magmatic zircons from both samples yield similar protolith ages of 945±6 and 942±6 Ma,indicating that the early Neoproterozoic magmatism is prevailed in the Alatage area.These zircons have crustal Hf model ages of1.82–2.22 and 1.70–2.03 Ga,respectively,which are significantly older than their crystallization ages.It indicates that their parental magmas were derived from the reworking of ancient crust.However,we suggest that these Paleoproterozoic Hf model ages might result from mixing of continental materials with different ages in the Neoproterozoic crust.The inherited(detrital)zircon cores not only yield a wide age range of ca.989–1617 Ma,but also exhibit large Hf-isotope variations with Hf model ages of1.54–2.30 Ga.In particular,some 1.4–1.6 Ga zircons show high initial176Hf/177Hf ratios,consistent with those of depleted mantle,which indicates that the Mesoproterozoic event involved both reworking of older crust and generation of juvenile crust.The Central Tianshan Block has different Precambrian crustal growth history from the Tarim Craton.Therefore,it would not be a fragment of the Precambrian basement of the Tarim Craton.  相似文献   

8.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.  相似文献   

9.
High-precision U-Pb dating by in situ LA-ICP-MS yields an age of 4079±5 Ma for a xenocrystal zircon from Ordovician volcanics of the Caotangou Group in western part of the North Qinling Orogenic Belt. As a result, the North Qinling Orogenic Belt becomes one of a few localities in the world that contain Hadean age records (4276±6 Ma and 4404±8 Ma detrital zircons from Jack Hill of the Yilgarn craton, 4016 Ma Acasta gneisses of the Wopmay Orogeny and Burang quartzite with detrital zircon of 4103 Ma in Tibet). It is also the first report of the Hadean age in Phanerozoic volcanics. The finding of the 4.1 Ga xenocrystal zircon provides not only the geochronological record of the oldest crustal materials in China, but also the condition for further search for rocks forming in the region during the early time of the Earth’s evolution. Thirty-six zircon U-Pb dates from the Ordovician volcanic rocks are subgrouped into seven generations that represent different tectono-magmatic events in the North Qinling Orogenic Belt. Among them, two periods of 0.9-1.5 Ga and 0.4-0.5 Ga are consistent with Mesoproterozoic and Early Paleozoic orogenies, respectively.  相似文献   

10.
In situ zircon U-Pb ages for the recently discovered Zhunuo porphyry copper deposit in the western part of the Gangdese metallogenic belt in Tibet were determined by sensitive high-resolution ion mi-croprobe(SHRIMP) . The ages can be divided into two separate groups,reflecting more than four major tectono-magmatic events in the area. The 62.5±2.5 Ma age of inherited zircons may be related to the volcanic eruption of the Linzizong Group formed shortly after the India-Asia continental collision. The 50.1±3.6 Ma age most likely corresponds to the time of underplating of mantle-derived mafic magma in Gangdese. The 15.6±0.6 Ma age obtained from magmatic zircons is interpreted as the age of crystalli-zation of the Zhunuo ore-forming porphyry. Finally,a molybdenite Re-Os isochron age of 13.72±0.62 Ma is consistent with another zircon U-Pb age of 13.3 ±0.2 Ma,representing the time of copper mineraliza-tion. These ages,in combination with available literature data,indicate that magmatic crystallization and copper mineralization in the Gangdese metallogenic belt became gradually younger westward,and further suggest that the Zhunuo porphyry copper deposit was formed in the same tectonic stage as other porphyry copper deposits in the eastern and central Gangdese belt. This conclusion provides critical information for future exploration of porphyry copper deposits in western Gangdese.  相似文献   

11.
In situ zircon U-Pb ages for the recently discovered Zhunuo porphyry copper deposit in the western part of the Gangdese metallogenic belt in Tibet were determined by sensitive high-resolution ion microprobe (SHRIMP). The ages can be divided into two separate groups, reflecting more than four major tectono-magmatic events in the area. The 62.5±2.5 Ma age of inherited zircons may be related to the volcanic eruption of the Linzizong Group formed shortly after the India-Asia continental collision. The 50.1±3.6 Ma age most likely corresponds to the time of underplating of mantle-derived mafic magma in Gangdese. The 15.6±0.6 Ma age obtained from magmatic zircons is interpreted as the age of crystallization of the Zhunuo ore-forming porphyry. Finally, a molybdenite Re-Os isochron age of 13.72±0.62 Ma is consistent with another zircon U-Pb age of 13.3±0.2 Ma, representing the time of copper mineralization. These ages, in combination with available literature data, indicate that magmatic crystallization and copper mineralization in the Gangdese metallogenic belt became gradually younger westward, and further suggest that the Zhunuo porphyry copper deposit was formed in the same tectonic stage as other porphyry copper deposits in the eastern and central Gangdese belt. This conclusion provides critical information for future exploration of porphyry copper deposits in western Gangdese.  相似文献   

12.
Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0-0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8-0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.  相似文献   

13.
The East Junggar is an important part of the Central Asian Orogenic Belt(CAOB).Using in situ zircon dating and Hf isotopic analysis by LA-ICP-MS and MC-ICP-MS,respectively,a detrital zircon of 4040 Ma age was found in sedimentary sequences from the Aermantai ophiolitic mélange,East Junggar.This is the oldest age record in the East Junggar terrane,and also marks the first zircon locality in the CAOB with an age older than 4.0 Ga,which is attributed to the Hadean crust.The 4040 Ma detrital zircon has anεHf(t)value of–5.2 and a two-stage Hf modal age of 4474 Ma,suggesting the presence of very old(Hadean)crustal material in the source area.Beside peak ages of 446 Ma,we found four age groups of 3.6–3.1 Ga,2.53–2.37 Ga,1.14–0.89 Ga and 0.47–0.42 Ga from 141 effective measuring points.The age of 426±4 Ma for the five youngest detrital zircons defines the lower limit of the deposition time of sedimentary sequencess in the Aermantai ophiolitic mélange.The 0.47–0.42 Ga zircons exhibit176Hf/177Hf ratios of 0.282156 to 0.282850,corresponding to variableεHf(t)values from–9.3 to 12.0 and Hf model ages from2011 to 646 Ma.These characteristics are similar to those of the early Paleozoic igneous and gneissic zircons from the Altai,but significantly different from those of the East Junggar.Based on the material structures of felspathic greywacke,the morphology,internal texture and age distributions of dated detrital zircons,in combination with a study of the regional geological data,it is suggested that the sedimentary sequences in the Aermantai ophiolitic mélange was deposited in the Late Silurian,with the main provenance from the Altai Orogen in the north.This indicates that the early Paleozoic ocean represented by the Aermantai ophiolitic mélange was readily closed during the Late Silurian,and the northern edge of the East Junggar terrane was accreted to the Altai Orogen.The joint of them then served as a marginal orogen in the southern edge of the Siberia Paleocontinent.  相似文献   

14.
Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin   总被引:23,自引:0,他引:23  
Zircon LA-ICP MS U-Pb dating of six metamorphic rocks and a metagranite (breccia) from southern basement of the Songliao Basin are reported in order to constrain the formation ages of basement. The basement metamorphic rocks in the Songliao Basin mainly consist of metagabbro (L45-1), amphibolite (SN117), metarhyolitical tuff (G190), sericite (Ser) schist (N103), chlorite (Chl) schist (T5-1), biotite (Bi)-actinolite (Act)-quartz (Q) schist (Y205), and metagranite (L44-1). The cathodoluminesence (CL) images of the zircons from metagabbro (L45-1) and metagranite (L44-1) indicate that they have cores of magmatic origin and rims of metamorphic overgrowths. Their U-Pb isotopic ages are 1808±21 Ma and 1873±13 Ma, respectively. The zircons with oscillatory zoning from amphibolite (SN117) and Chl schist (T5-1), being similar to those of mafic igneous rocks, yield ages of 274 ± 3.4 Ma and 264 ± 3.2 Ma, re-spectively. The zircons from metarhyolitical tuff (G190) and Ser schist (N103) display typical magmatic growth zoning and yield ages of 424 ± 4.5 Ma and 287 ± 5.1Ma, respectively. Most of zircons from Bi-Act-Q schist (Y205) are round in shape and different in absorption degree in the CL images, implying their sedimentary detritals. U-Pb dating yield concordant ages of 427 ± 3.1Ma, 455 ± 12 Ma, 696 ± 13 Ma, 1384±62 Ma, 1649±36 Ma, 1778±18 Ma, 2450±9 Ma, 2579±10 Ma, 2793±4 Ma and 2953±14 Ma. The above-mentioned results indicate that the Precambrian crystalline basement (1808―1873 Ma) exists in the southern Songliao Basin and could be related to tectonic thrust, and that the Early Paleozoic (424―490 Ma) and Late Paleozoic magmatisms (264―292 Ma) also occur in the basin basement, which are consistent with the ages of the detrital zircons from Bi-Act-Q schist in the basement.  相似文献   

15.
The Wudangshan, Yaolinghe volcanic-sedimentary sequences and doleritic-gabbroic sills comprise the largest exposed Precambrian basement in South Qinling. Zircons separated from 5 volcanic-pyroclastic samples of the Wudangshan Group, 2 volcanic samples of the Yaolinghe Group and one sample for the mafic sills were used for U-Pb dating by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The results reveal that the Wudangshan volcanic sequence was formed at (755±3) Ma (a weighted mean from the 5 samples, MSWD=0.47), whereas the Yaolinghe volcanic suite and the mafic sill were crystallized at (685±5) (2 samples, MSWD=0.36) and (679±3) Ma (MSWD=1.6), respectively, which are equal to each other within analysis errors. These ages are markedly younger than those previously documented for the rocks. The newly obtained ages for the Wudangshan and Yaolinghe Groups are Identical to those of the bottom Liantuo and slightly older than those of the Nantuo Formations, respectively, lower strata of the Nanhua (middle to late Neoproterozoic) stratotype section in eastern Three Gorges, Yangtze creton. A range of inherited magmatic zircons was recognized with ages of 830 to 780 Ma, which are typical of Neoprotzrozoic magmatisms recorded along the margins and interior of the Yangtze craton. Thus, there is Neoproterozoic basement comprising 830-780 Ma igneous suites in South Qinling; the inherited zircons were detrital sediments derived from the northern margin of the Yangtze craton. Accordingly, it is suggested that the South Qinling is a segment of the Yangtze creton before the Qinling Orogeny.  相似文献   

16.
The petrochemical as well as zircon U-Pb and Lu-Hf isotopic studies of granulite facies metamorphic rock from the Tao'xi Group in eastern Nanling Range, Central Cathaysia indicate that its protolith is the sedimentary rock with low maturation index. The clastic materials are mostly from middle Neoproterozoic (-736 Ma) granitoid rocks with minor Neoarchaean and Paleoproterozoic rocks. The timing of this Neoproterozoic magmatism is in agreement with the second period of magmatism widespread surrounding the Yangtze Block. Hf isotopic data indicate that the Neoproterozoic granitoids resulted from the recycled Paleoproterozoic mantle-derived crustal materials. The sedimentary rock was deposited in Late Neoproterozoic Era, and carried into low crust in Early Paleozoic. The partial melting of the meta-sedimentary rock took place at about 480 Ma and subsequently granulite facies metamorphism occurred at ca. 443 Ma. The zircons forming during this time interval (Early Paleozoic) show large Hf isotope variations, and their ZHf(t) values increase from -13.2 to +2.36 with decreasing age, suggesting the injection of mantle-derived materials during partial melting and metamorphism processes in the Early Paleozoic. Calculation results show that this metamorphic rock, if evolved to Mesozoic, has similar isotopic composition to the nearby Mesozoic high Si peraluminous granites, implying that this kind of granulite facies metamorphic rock is probably the source material of some Mesozoic peraluminous granitoids in eastern Nanling Range.  相似文献   

17.
High-precision U-Pb dating by in situ LA-ICP-MS yields an age of 4079±5 Ma for a xenocrystal zircon from Ordovician volcanics of the Caotangou Group in western part of the North Qinling Orogenic Belt. As a result, the North Qinling Orogenic Belt becomes one of a few localities in the world that contain Hadean age records (4276±6 Ma and 4404±8 Ma detrital zircons from Jack Hill of the Yilgarn craton, 4016 Ma Acasta gneisses of the Wopmay Orogeny and Burang quartzite with detrital zircon of 4103 Ma in Tibet). It is also the first report of the Hadean age in Phanerozoic volcanics. The finding of the 4.1 Ga xenocrystal zircon provides not only the geochronological record of the oldest crustal materials in China, but also the condition for further search for rocks forming in the region during the early time of the Earth's evolution. Thirty-six zircon U-Pb dates from the Ordovician volcanic rocks are subgrouped into seven generations that represent different tectono-magmatic events in the North Qinling Orogenic Belt. Among them, two periods of 0.9--1.5 Ga and 0.4--0.5 Ga are consistent with Mesoproterozoic and Early Paleozoic orogenies, respectively.  相似文献   

18.
The Mesoproterozoic Changcheng System is widely distributed in the North China Craton. Determining its time of deposition and sources is important to understand the Precambrian crustal evolution of the North China Craton. This paper suggests age distribution patterns for detrital zircons from clastic sediments of the Changcheng System in the Ming Tombs area, Beijing. Samples of feldspar-bearing sandstone (CHc-2) and pure sandstone (CHc-9) were collected from the Changzhougou Formation, which constitutes the basal part of the Changcheng System. Detrital zircons show an age range from 2.35 to 2.60 Ga. However, sample CHc-9 in the upper Changzhougou Formation also contains some zircons with ages of 1.9-1.8 Ga and 2.3-2.1 Ga. The age patterns lead to the following conclusions: (1) Most of the detrital material came from a source area composed predominantly of -2.5 Ga continental crust of the North China Craton; (2) 1.9--1.8 Ga reflects the age record of Palaeoproterozoic continent-continent collisional event in the North China Craton; and (3) the oldest age for deposition of the Changcheng System is 1.8 Ga.  相似文献   

19.
In situ U-Pb dating and Lu-Hf isotopic analysis were carried out for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southern margin of the North China Craton (NCC). The results provide further constraints on the crustal formation and evolution history of NCC. Four ^207Pb/^206Pb age populations were obtained from 99 analyses, with clusters at -3.40 Ga, 2.77-2.80 Ga, -2.50 Ga and 2.34 Ga, respectively. The 3.40 Ga old zircons have similar Hf isotopic compositions to those from Archean rocks in the Jidong and Anshan areas of NCC. However, crustal remnants older than 3.6 Ga have been identified in the southern margin of NCC, the South China Craton, the northwestern part of the Qinling Orogen and its adjacent area. Thus, it is not easy to trace the source rock from which the 3.40 Ge detrital zircons were derived. It can be inferred that the crustal remnants older than 3.40 Ga might have been widely distributed in the North China Craton. The 2.77-2.80 Ga zircons make up a relatively small proportion and have the highest εHf(t) values (up to 6.1±1.6), consistent with the Hf isotopic composition of the depleted mantle at 2.83 Ga. Their single-stage Hf model age of 2.83 Ga is close to their crystallized age, suggesting that their source rocks were extracted from the contemporaneous depleted mantle. The -2.50 Ga zircon grains constitute about 85% of the total grain population and their Hf isotopic compositions indicate major growth of juvenile crust at -2.50 Ga but minor reworking of ancient crust. The youngest zircon dated in this study gave an U-Pb age of 2337±2.3 Ma, which can be considered the maximum depositional age of the formation of the Songshan Group.  相似文献   

20.
This paper carries out studies about LA-ICPMS U–Pb dating and Hf isotopic compositional analysis for detrital zircons in two metasedimentary samples that were taken from the Zhaochigou Formation-complex in the Helan Mountain.The results show that the Zhaochigou Formation-complex formed*1.96 Ga,and it is a part of the Khondalite Series that is widespread in the North China Craton(NCC).The age spectrum of the detrital zircons indicates that the Zhaochigou Formation-complex shared the same provenance with the eastern edge of the Khondalite Series.Products of ancient magmatic activities within the Khondalite Belt may be the major source for the sedimentary materials that formed the Khondalite Series.Our age-dating results suggest that the Khondalite Series in the NCC may have experienced two stages of metamorphism,as the early stage occurred during 1.96–1.95 Ga,and the later stage occurred at about 1.87 Ga.The Hfisotopic data indicate that the Western Block of the NCC endured a stage of crustal growth at 2.5–2.3 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号