首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
大颗粒气固流化床内两相流动的CFD模拟   总被引:2,自引:2,他引:0  
采用欧拉双流体模型和颗粒动力学方法,数值模拟了大颗粒流化床在不同密度、布风装置及曳力模型情况下的气固两相流动,考察了大颗粒流化床流化和流动特点,颗粒体积分率分布,床层压力瞬时变化,床层碰撞比,以及颗粒速度径向和空隙率轴向分布规律.研究结果表明,与直型布风板流化床比较,凹型布风板流化床内的气泡产生快,颗粒横向运动能力强;随着颗粒密度的增大,其在凹型布风板流化床边壁处的速度比中心位置处减小的快;比较3种曳力模型,发现其模拟的轴向空隙率分布和床层压力存在较大差异,且与床层膨胀比实验关联式相比,3种模型预测的值比实验关联式要大一些.通过研究,3个曳力模型中Gidaspow模型相对适用于大颗粒气固流化床的数值模拟.  相似文献   

2.
声波的多尺度分解与颗粒粒径分布的实验研究   总被引:19,自引:0,他引:19  
利用颗粒运动碰撞壁面产生声波的机理以及多尺度小波分解方法,建立了Hou-Yang方程,揭示声波信号在各尺度的能量分率分布特征及粒径分布的定量关系.通过在φ为150 mm流化床冷模装置中,分别对多种聚乙烯颗粒体系进行流态化实验,确定了声波信号的小波分解的最优尺度数为7.并通过实验分析得到的单一j粒径与混合粒径的能量比λj、单一j粒径颗粒的特征谱图和混合粒径的能量谱图,实现了冷模装置和工业热态操作中流化床壁面局部区域的颗粒粒径分布的在线测量,其测量值与取样筛分分析值的平均偏差均小于15.8%.应用Hou-Yang方程还可及时预测床内颗粒粒径的异常分布,判断颗粒团聚的产生.  相似文献   

3.
循环流化床上升段流体动力特性数值模拟   总被引:2,自引:0,他引:2  
针对循环流化床上升管内气固两相流动,建立了Eulerian双流体模型,将离散的固体颗粒相看作是连续介质,建立颗粒相和气相的质量守恒、动量守恒及k-ε输运方程等模型,用Fluent软件作计算工具,对流化床上升段内的颗粒速度分布、颗粒浓度分布和床内压力分布等进行了二维数值模拟.计算结果表明:上升段存在固体颗粒浓度中心区域低、近壁面高的环核结构,固体颗粒在横截面上存在由核心区向环形区的内循环运动,在相同气流速度下,沿床高压降随循环物料的增加而变大.数值模拟的结果与 Prssinen的实验结果吻合良好,表明所建模型正确,数值计算结果可以有效地应用于预测实际装置性能和指导循环流化床的设计和运行.  相似文献   

4.
采用离散单元法分析了非均匀布风方式下流化床内的气固流动特性.数值模拟结果表明:床内存在大尺度的颗粒横向循环流动;高风速区为气泡活跃区域,气泡尾涡裹挟颗粒上升是形成内循环的关键环节;供风非均匀程度越大,颗粒内循环力度越强烈;改变风速,颗粒流量变化显著;倾斜布风板设计有利于促进颗粒定向循环过程.  相似文献   

5.
通过小波分析和R/S分形分析方法,对气固流化床内静电势波动信号进行多尺度分解,研究了信号的分形特征,建立了静电波动信号的尺度划分标准.实验结果表明,在鼓泡流化状态下,静电信号中介尺度的能量分率最高,且介尺度能量分率沿径向由内而外逐渐减小,与床内空隙率的径向变化规律一致.证实介尺度信号与气泡运动有直接的对应关系,各尺度能量分率的变化能够灵敏地指示出流化床内的流型转变,据此可对颗粒的起始流化速度以及起始湍动速度作出较准确的判断.  相似文献   

6.
在横截面为200 mm×200 mm、高1 200 mm的方形截面冷态流化床反应器中,对4种异型模拟固体废弃物颗粒在不同床料辅助流化下的分布特性进行了试验研究.结果表明,床料密度对床层内颗粒混合的影响较大,床料密度的增大使固废颗粒的浮升趋势显著增强,单种固废颗粒在床层内的分布特性取决于床料密度与此种颗粒密度的比值ρb/ρp,且对4种固废颗粒考察后发现,当ρb/ρp≈2.4时,床层混合最为理想.床料粒径的增大同样增强了固废颗粒的浮升趋势,但提升幅度相对较小.床料体积分数增大有利于床层内颗粒的稳态混合,为保证固废流化床内良好的流化混合质量,床料体积分数应大于80%.  相似文献   

7.
本文所述的增压流化床燃烧及脱硫数学模型以两相理论为基础,综合考虑了床内气固流动、颗粒扬析和磨损、颗粒在床内停留时间的随机分布、挥发份和炭的燃烧、二氧化硫的脱除及床内主要气体组分的浓度沿床高的变化等因素,实现了增压流化床燃烧和脱硫的系统模化,模型的计算结果与东南大学增压流化床燃烧装置(SEU-PFBC)的试验值相比,两者吻合良好,有一定的参考价值。  相似文献   

8.
 采用双欧拉流体模型与颗粒流动理论相结合的方法,对3 种不同孔径布风板下颗粒流化效果进行数值模拟,获得颗粒的流态化特性。同时通过流化床反应器冷态实验,验证了孔径对流态化特性曲线的影响。结果显示,在1、2、3 mm 孔径的布风板中,孔径越小,最终压力降越大,同时临界流化气速越低;1 mm 孔径下床层的膨胀较为显著,流化床中气泡所含固体体积分数较低,且漏料最少,同时减小孔径有利于颗粒做规律性的循环运动,从而促进物料混合;流化稳定后,在静床层高度以上的位置上,颗粒体积分数随着高度的增加而迅速下降,且1 mm 孔径的下降趋势最平缓,颗粒分布较均匀;颗粒在流化床内的径向分布为典型的环-核结构,且孔径越小,核区的颗粒速度越低,而环区速度越高。  相似文献   

9.
大颗粒流化床中颗粒受力的数值模拟   总被引:1,自引:0,他引:1  
通过数值计算模拟了大颗粒鼓泡流化床中颗粒的受力情况.在模拟过程中,气相采用了欧拉描述方法,颗粒相运动过程的模拟采用了离散单元法.利用软球模型模化颗粒之间的碰撞力,分别研究了3种流化数下温度为300K、内含11000个直径3mm颗粒的流化床中,瞬间颗粒受力在床内的分布情况.结果表明:在通常情况下,乳化相区域颗粒受到的气体曳力平均值一般是其自身重力的1~2倍;除气泡内部外,颗粒所受到的碰撞力亦高于颗粒自身的重力;流化数越高,则床内碰撞力越大,当流化数为1.67后,碰撞力已成为影响床内颗粒无规则运动的主要因素.  相似文献   

10.
对影响循环流化床气固两相流动特性的因素进行了试验研究。结果表明,在循环流化床内存在着两个界限很明显的区域:下部的密相区和上部的快速区;在快速区内部分颗粒均匀地悬浮在上升气流中,另一部分形成颗粒团,它在循环流化床内作剧烈的上下运动,使床内颗粒浓度分布比较均匀;循环流化床内,床层密度在底部较大,风速增加,床层密度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号