首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Transmitter-evoked local calcium release stabilizes developing dendrites   总被引:10,自引:0,他引:10  
Lohmann C  Myhr KL  Wong RO 《Nature》2002,418(6894):177-181
In the central nervous system, dendritic arborizations of neurons undergo dynamic structural remodelling during development. Processes are elaborated, maintained or eliminated to attain the adult pattern of synaptic connections. Although neuronal activity influences this remodelling, it is not known how activity exerts its effects. Here we show that neurotransmission-evoked calcium (Ca(2+)) release from intracellular stores stabilizes dendrites during the period of synapse formation. Using a ballistic labelling method to load cells with Ca(2+) indicator dyes, we simultaneously monitored dendritic activity and structure in the intact retina. Two distinct patterns of spontaneous Ca(2+) increases occurred in developing retinal ganglion cells--global increases throughout the arborization, and local 'flashes' of activity restricted to small dendritic segments. Blockade of local, but not global, activity caused rapid retraction of dendrites. This retraction was prevented locally by focal uncaging of caged Ca(2+) that triggered Ca(2+) release from internal stores. Thus, local Ca(2+) release is a mechanism by which afferent activity can selectively and differentially regulate dendritic structure across the developing arborization.  相似文献   

2.
Kuba H  Ishii TM  Ohmori H 《Nature》2006,444(7122):1069-1072
Neurons initiate spikes in the axon initial segment or at the first node in the axon. However, it is not yet understood how the site of spike initiation affects neuronal activity and function. In nucleus laminaris of birds, neurons behave as coincidence detectors for sound source localization and encode interaural time differences (ITDs) separately at each characteristic frequency (CF). Here we show, in nucleus laminaris of the chick, that the site of spike initiation in the axon is arranged at a distance from the soma, so as to achieve the highest ITD sensitivity at each CF. Na+ channels were not found in the soma of high-CF (2.5-3.3 kHz) and middle-CF (1.0-2.5 kHz) neurons but were clustered within a short segment of the axon separated by 20-50 microm from the soma; in low-CF (0.4-1.0 kHz) neurons they were clustered in a longer stretch of the axon closer to the soma. Thus, neurons initiate spikes at a more remote site as the CF of neurons increases. Consequently, the somatic amplitudes of both orthodromic and antidromic spikes were small in high-CF and middle-CF neurons and were large in low-CF neurons. Computer simulation showed that the geometry of the initiation site was optimized to reduce the threshold of spike generation and to increase the ITD sensitivity at each CF. Especially in high-CF neurons, a distant localization of the spike initiation site improved the ITD sensitivity because of electrical isolation of the initiation site from the soma and dendrites, and because of reduction of Na+-channel inactivation by attenuating the temporal summation of synaptic potentials through the low-pass filtering along the axon.  相似文献   

3.
Integration and processing of electrical signals in individual neurons depend critically on the spatial distribution of ion channels on the cell surface. In hippocampal pyramidal neurons, voltage-sensitive calcium channels have important roles in the control of Ca2(+)-dependent cellular processes such as action potential generation, neurotransmitter release, and epileptogenesis. Long-term potentiation of synaptic transmission in the hippocampal pyramidal cell, a form of neuronal plasticity that is thought to represent a cellular correlate of learning and memory, is dependent on Ca2+ entry mediated by synaptic activation of glutamate receptors that have a high affinity for NMDA (N-methyl(-D-aspartate) and are located in distal dendrites. Stimuli causing long-term potentiation at these distal synapses also cause a large local increase in cytosolic Ca2+ in the proximal regions of dendrites. This increase has been proposed to result from activation of voltage-gated Ca2+ channels. At least four types of voltage-gated Ca2+ channels, designated N, L. T and P, may be involved in these processes. Here we show that L-type Ca2+ channels, visualized using a monoclonal antibody, are located in the cell bodies and proximal dendrites of hippocampal pyramidal cells and are clustered in high density at the base of major dendrites. We suggest that these high densities of L-type Ca2+ channels may serve to mediate Ca2+ entry into the pyramidal cell body and proximal dendrites in response to summed excitatory inputs to the distal dendrites and to initiate intracellular regulatory events in the cell body in response to the same synaptic inputs that cause long-term potentiation at distal dendritic synapses.  相似文献   

4.
Glucose-stimulated insulin secretion is associated with the appearance of electrical activity in the pancreatic beta-cell. At intermediate glucose concentrations, beta-cell electrical activity follows a characteristic pattern of slow oscillations in membrane potential on which bursts of action potentials are superimposed. The electrophysiological background of the bursting pattern remains unestablished. Activation of Ca(2+)-activated large-conductance K+ channels (KCa channel) has been implicated in this process but seems unlikely in view of recent evidence demonstrating that the beta-cell electrical activity is unaffected by the specific KCa channel blocker charybdotoxin. Another hypothesis postulates that the bursting arises as a consequence of two components of Ca(2+)-current inactivation. Here we show that activation of a novel Ca(2+)-dependent K+ current in glucose-stimulated beta-cells produces a transient membrane repolarization. This interrupts action potential firing so that action potentials appear in bursts. Spontaneous activity of this current was seen only rarely but could be induced by addition of compounds functionally related to hormones and neurotransmitters present in the intact pancreatic islet. K+ currents of the same type could be evoked by intracellular application of GTP, the effect of which was mediated by mobilization of Ca2+ from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores. These observations suggest that oscillatory glucose-stimulated electrical activity, which is correlated with pulsatile release of insulin, results from the interaction between the beta-cell and intraislet hormones and neurotransmitters. Our data also provide evidence for a close interplay between ion channels in the plasma membrane and InsP3-induced mobilization of intracellular Ca2+ in an excitable cell.  相似文献   

5.
The dendrites of many types of neurons contain voltage-dependent Na+ and Ca2+ conductances that generate action potentials (see ref. 1 for review). The function of these spikes is not well understood, but the Ca2+ entry stimulated by spikes probably affects Ca(2+)-dependent processes in dendrites. These include synaptic plasticity, cytotoxicity and exocytosis. Several lines of evidence suggest that dendritic spikes occur within subregions of the dendrites. To study the mechanism that govern the spread of spikes in the dendrites of hippocampal pyramidal cells, we imaged Ca2+ entry with Fura-2 (ref. 9) and Na+ entry with a newly developed Na(+)-sensitive dye. Our results indicate that Ca2+ entry into dendrites is triggered by Na+ spikes that actively invade the dendrites. The restricted spatial distribution of Ca2+ entry seems to depend on the spread of Na+ spikes in the dendrites, rather than on a limited distribution of Ca2+ channels. In addition, we have observed an activity-dependent process that modulates the invasion of spikes into the dendrites and progressively restricts Ca2+ entry to more proximal dendritic regions.  相似文献   

6.
Shu Y  Hasenstaub A  Duque A  Yu Y  McCormick DA 《Nature》2006,441(7094):761-765
Traditionally, neuronal operations in the cerebral cortex have been viewed as occurring through the interaction of synaptic potentials in the dendrite and soma, followed by the initiation of an action potential, typically in the axon. Propagation of this action potential to the synaptic terminals is widely believed to be the only form of rapid communication of information between the soma and axonal synapses, and hence to postsynaptic neurons. Here we show that the voltage fluctuations associated with dendrosomatic synaptic activity propagate significant distances along the axon, and that modest changes in the somatic membrane potential of the presynaptic neuron modulate the amplitude and duration of axonal action potentials and, through a Ca2+-dependent mechanism, the average amplitude of the postsynaptic potential evoked by these spikes. These results indicate that synaptic activity in the dendrite and soma controls not only the pattern of action potentials generated, but also the amplitude of the synaptic potentials that these action potentials initiate in local cortical circuits, resulting in synaptic transmission that is a mixture of triggered and graded (analogue) signals.  相似文献   

7.
Non-uniform Ca2+ buffer distribution in a nerve cell body   总被引:4,自引:0,他引:4  
D Tillotson  A L Gorman 《Nature》1980,286(5775):816-817
In nerve cells, Ca2+ influx through voltage-dependent channels in the membrane causes a transient rise in the intracellular, free Ca2+ concentration. Such changes have been shown to be important for the release of transmitter at the axon terminal and for the control of the movement of ions through channels in the soma membrane. The transient behaviour of the rise in Ca2+ concentration can, in part, be explained by the presence of sequestering systems in the cell which tend to limit the magnitude and duration of changes in internal Ca2+ (refs 7--10). It is possible that systems involved in buffering changes in internal Ca2+ are not distributed uniformly throughout the cell. This is particularly likely in the cell body, where a significant portion of the cytoplasm is occupied by the nucleus, whose buffering capacity may differ from that of other cellular regions. We report here that in the soma of a molluscan pacemaker neurone, the machinery responsible for short-term buffering of Ca2+ ions is localized near the inner surface of the plasma membrane.  相似文献   

8.
9.
The hypothalamo-neurohypophysial system offers a unique example in the adult mammalian central nervous system (CNS) of a functional and structural plasticity related to a physiological state. During lactation, oxytocin neurones evolve a synchronized electrical activation which permits pulsatile hormone release at milk ejection. At the same time, in the supraoptic (SON) and paraventricular nuclei, glial coverage of neurones diminishes, so that large portions of their surface membrane become directly juxtaposed; synaptic remodelling also associates pairs of neurones through the formation of common presynaptic terminals. These structural changes, reversible after weaning, affect exclusively oxytocinergic neurones and could facilitate their synchronized electrical activity. As several observations suggest that oxytocin itself is released centrally, we have examined the effect of prolonged intracerebroventricular infusions of oxytocin on the structure of the SON of non-lactating animals. We report here that the peptide indeed engenders the structural reorganization characteristic of the oxytocin system when it is physiologically activated. Similar infusion of vasopressin has no effect. Our observations thus demonstrate that a central neuropeptide can induce anatomical changes in the adult CNS, and suggest that oxytocin can regulate its own release by contributing to the dramatic restructuring of the nuclei containing the neurones responsible for its secretion.  相似文献   

10.
G Dayanithi  M Cazalis  J J Nordmann 《Nature》1987,325(6107):813-816
The hormone relaxin has recently been shown to inhibit not only uterine muscle contraction, but also the release of oxytocin into the plasma. Intravenous injection of porcine relaxin in anaesthetized lactating rats inhibits milk ejection and injection of relaxin into the cerebral ventricles disturbs the pattern of the milk ejection reflex. Recent experiments performed in vivo indicate that relaxin might act not only in the uterus, but also in the hypothalamus and possibly in the neurohypophysis. We tested this hypothesis in vitro by studying the effect of relaxin on hormone release from isolated neural lobes of the pituitary and isolated neurosecretory nerve endings of the neurohypophysis from the rat. We report here that relaxin has a dual effect on neurohypophysial hormone secretion. Under basal conditions, vasopressin and oxytocin release was inhibited by relaxin but, when the nerve endings were depolarized, vasopressin and oxytocin secretion was potentiated. We also found that relaxin acts at a stage before the increase in cytoplasmic free Ca2+ that is necessary for inducing hormone release, possibly by gating the calcium channel.  相似文献   

11.
NMDA spikes in basal dendrites of cortical pyramidal neurons   总被引:21,自引:0,他引:21  
Schiller J  Major G  Koester HJ  Schiller Y 《Nature》2000,404(6775):285-289
Basal dendrites are a major target for synaptic inputs innervating cortical pyramidal neurons. At present little is known about signal processing in these fine dendrites. Here we show that coactivation of clustered neighbouring basal inputs initiated local dendritic spikes, which resulted in a 5.9 +/- 1.5 mV (peak) and 64.4 +/- 19.8 ms (half-width) cable-filtered voltage change at the soma that amplified the somatic voltage response by 226 +/- 46%. These spikes were accompanied by large calcium transients restricted to the activated dendritic segment. In contrast to conventional sodium or calcium spikes, these spikes were mediated mostly by NMDA (N-methyl-D-aspartate) receptor channels, which contributed at least 80% of the total charge. The ionic mechanism of these NMDA spikes may allow 'dynamic spike-initiation zones', set by the spatial distribution of glutamate pre-bound to NMDA receptors, which in turn would depend on recent and ongoing activity in the cortical network. In addition, NMDA spikes may serve as a powerful mechanism for modification of the cortical network by inducing long-term strengthening of co-activated neighbouring inputs.  相似文献   

12.
Glutamate is important in several forms of synaptic plasticity such as long-term potentiation, and in neuronal cell degeneration. Glutamate activates several types of receptors, including a metabotropic receptor that is sensitive to trans-1-amino-cyclopenthyl-1,3-dicarboxylate, coupled to G protein(s) and linked to inositol phospholipid metabolism. The activation of the metabotropic receptor in neurons generates inositol 1,4,5-trisphosphate, which causes the release of Ca2+ from intracellular stores and diacylglycerol, which activates protein kinase C. In nerve terminals, the activation of presynaptic protein kinase C with phorbol esters enhances glutamate release. But the presynaptic receptor involved in this protein kinase C-mediated increase in the release of glutamate has not yet been identified. Here we demonstrate the presence of a presynaptic glutamate receptor of the metabotropic type that mediates an enhancement of glutamate exocytosis in cerebrocortical nerve terminals. Interestingly, this potentiation of glutamate release is observed only in the presence of arachidonic acid, which may reflect that this positive feedback control of glutamate exocytosis operates in concert with other pre- or post-synaptic events of the glutamatergic neurotransmission that generate arachidonic acid. This presynaptic glutamate receptor may have a physiological role in the maintenance of long-term potentiation where there is an increase in glutamate release mediated by postsynaptically generated arachidonic acid.  相似文献   

13.
Yuan P  Leonetti MD  Hsiung Y  MacKinnon R 《Nature》2012,481(7379):94-97
High-conductance voltage- and Ca(2+)-activated K(+) channels function in many physiological processes that link cell membrane voltage and intracellular Ca(2+) concentration, including neuronal electrical activity, skeletal and smooth muscle contraction, and hair cell tuning. Like other voltage-dependent K(+) channels, Ca(2+)-activated K(+) channels open when the cell membrane depolarizes, but in contrast to other voltage-dependent K(+) channels, they also open when intracellular Ca(2+) concentrations rise. Channel opening by Ca(2+) is made possible by a structure called the gating ring, which is located in the cytoplasm. Recent structural studies have defined the Ca(2+)-free, closed, conformation of the gating ring, but the Ca(2+)-bound, open, conformation is not yet known. Here we present the Ca(2+)-bound conformation of the gating ring. This structure shows how one layer of the gating ring, in response to the binding of Ca(2+), opens like the petals of a flower. The degree to which it opens explains how Ca(2+) binding can open the transmembrane pore. These findings present a molecular basis for Ca(2+) activation of K(+) channels and suggest new possibilities for targeting the gating ring to treat conditions such as asthma and hypertension.  相似文献   

14.
Robinson IM  Ranjan R  Schwarz TL 《Nature》2002,418(6895):336-340
At nerve terminals, a focal and transient increase in intracellular Ca(2+) triggers the fusion of neurotransmitter-filled vesicles with the plasma membrane. The most extensively studied candidate for the Ca(2+)-sensing trigger is synaptotagmin I, whose Ca(2+)-dependent interactions with acidic phospholipids and syntaxin have largely been ascribed to its C(2)A domain, although the C(2)B domain also binds Ca(2+) (refs 7, 8). Genetic tests of synaptotagmin I have been equivocal as to whether it is the Ca(2+)-sensing trigger of fusion. Synaptotagmin IV, a related isoform that does not bind Ca(2+) in the C(2)A domain, might be an inhibitor of release. We mutated an essential aspartate of the Ca(2+)-binding site of the synaptotagmin I C(2)A domain and expressed it in Drosophila lacking synaptotagmin I. Here we show that, despite the disruption of the binding site, the Ca(2+)-dependent properties of transmission were not altered. Similarly, we found that synaptotagmin IV could substitute for synaptotagmin I. We conclude that the C(2)A domain of synaptotagmin is not required for Ca(2+)-dependent synaptic transmission, and that synaptotagmin IV promotes rather than inhibits transmission.  相似文献   

15.
Role for microsomal Ca storage in mammalian neurones?   总被引:4,自引:0,他引:4  
I R Neering  R N McBurney 《Nature》1984,309(5964):158-160
Alterations in the intracellular concentration of calcium ions [( Ca2+]i) are increasingly being found to be associated with regulatory functions in cells of all kinds. In muscle, an elevation of [Ca2+]i is the final link in excitation-contraction coupling while at nerve endings and in secretory cells, similar rises in [Ca2+]i are thought to mediate exocytosis. The discovery of calcium-activated ion channels indicated a role for intracellular calcium in the regulation of membrane excitability. Calcium transients associated with either intracellular release or the inward movement of Ca2+ across the membrane have been recorded in molluscan neurons and more recently in neurones of bullfrog sympathetic ganglia. Here, we report the first recordings of calcium transients in single mammalian neurones. In these experiments we have found that the methylxanthine, caffeine, causes the release of calcium from a labile intracellular store which can be refilled by Ca2+ entering the cell during action potentials.  相似文献   

16.
Insulin is produced and secreted by the B cells in the endocrine pancreas. In vivo, insulin secretion is under the control of a number of metabolic, neural and hormonal substances. It is now clear that stimulation of insulin release by fuel secretagogues, such as glucose, involves the closure of K+ channels that are sensitive to the intracellular ATP concentration (KATP channels). This leads to membrane depolarization and the generation of Ca2(+)-dependent action potentials. The mechanisms whereby hormones and neurotransmitters such as adrenaline, galanin and somatostatin, which are released by intraislet nerve endings and the pancreatic D cells, produce inhibition of insulin secretion are not clear. Here we show that adrenaline suppresses B-cell electrical activity (and thus insulin secretion) by a G protein-dependent mechanism, which culminates in the activation of a sulphonylurea-insensitive low-conductance K+ channel distinct from the KATP channel.  相似文献   

17.
Cancela JM  Churchill GC  Galione A 《Nature》1999,398(6722):74-76
Many hormones and neurotransmitters evoke Ca2+ release from intracellular stores, often triggering agonist-specific signatures of intracellular Ca2+ concentration. Inositol trisphosphate (InsP3) and cyclic adenosine 5'-diphosphate-ribose (cADPR) are established Ca2+-mobilizing messengers that activate Ca2+ release through intracellular InsP3 and ryanodine receptors, respectively. However, in pancreatic acinar cells, neither messenger can explain the complex pattern of Ca2+ signals triggered by the secretory hormone cholecystokinin (CCK). We show here that the Ca2+-mobilizing molecule nicotinic acid adenine dinucleotide phosphate (NAADP), an endogenous metabolite of beta-NADP, triggers a Ca2+ response that varies from short-lasting Ca2+ spikes to a complex mixture of short-lasting (1-2s) and long-lasting (0.2-1 min) Ca2+ spikes. Cells were significantly more sensitive to NAADP than to either cADPR or InsP3, whereas higher concentrations of NAADP selectively inactivated CCK-evoked Ca2+ signals in pancreatic acinar cells, indicating that NAADP may function as an intracellular messenger in mammalian cells.  相似文献   

18.
A variety of evidence indicates that calcium-dependent protein phosphorylation modulates the release of neurotransmitter from nerve terminals. For instance, the injection of rat calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-dependent PK II) into the preterminal digit of the squid giant synapse leads to an increase in the release of a so-far unidentified neurotransmitter induced by presynaptic depolarization. But until now, it has not been demonstrated that Ca2+/CaM-dependent PK II can also regulate neurotransmitter release in the vertebrate nervous system. Here we report that the introduction of Ca2+/CaM-dependent PK II, autoactivated by thiophosphorylation, into rat brain synaptosomes (isolated nerve terminals) increases the initial rate of induced release of two neurotransmitters, glutamate and noradrenaline. We also show that introduction of a selective peptidergic inhibitor of Ca2+/CaM-dependent PK II inhibits the initial rate of induced glutamate release. These results support the hypothesis that activation of Ca2+/CaM-dependent PK II in the nerve terminal removes a constraint on neurotransmitter release.  相似文献   

19.
Electrical activity in non-neuronal cells can be induced by altering the membrane potential and eliciting action potentials. For example, hormones, nutrients and neurotransmitters act on excitable endocrine cells. In an attempt to correlate such electrical activity with regulation of cell activation, we report here direct measurements of cytosolic free Ca2+ changes coincident with action potentials. This was achieved by the powerful and novel combination of two complex techniques, the patch clamp and microfluorimetry using fura 2 methodology. Changes in intracellular calcium concentration were monitored in single cells of the pituitary line GH3B6. We show that a single action potential leads to a marked transient increase in cytosolic free calcium. The size of these short-lived maxima is sufficient to evoke secretory activity. The striking kinetic features of these transients enabled us to identify oscillations in intracellular calcium concentration in unperturbed cells resulting from spontaneous action potentials, and hence provide an explanation for basal secretory activity. Somatostatin, an inhibitor of pituitary function, abolishes the spontaneous spiking of free cytosolic Ca2+ which may explain its inhibitory effect on basal prolactin secretion. Our data therefore demonstrate that electrical activity can stimulate Ca2+-dependent functions in excitable non-neuronal cells.  相似文献   

20.
In many cell types, receptor activation of phosphoinositidase C results in an initial release of intracellular Ca2+ stores followed by sustained Ca2+ entry across the plasma membrane. Inositol 1,4,5-trisphosphate is the mediator of the initial Ca2+ release, although its role in the mechanism underlying Ca2+ entry remains controversial. We have now used two techniques to introduce inositol phosphates into mouse lacrimal acinar cells and measure their effects on Ca2+ entry: microinjection into cells loaded with Fura-2, a fluorescent dye which allows the measurement of intracellular free calcium concentration by microspectrofluorimetry, and perfusion of patch clamp pipettes in the whole-cell configuration while monitoring the activity of Ca(2+)-activated K+ channels as an indicator of intracellular Ca2+. We report here that inositol 1,4,5-trisphosphate serves as a signal that is both necessary and sufficient for receptor activation of Ca2+ entry across the plasma membrane in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号