首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
已有文献进行了微弓形扁长金属杆在轴向重物冲击下的动态屈曲实验研究,得到了扁长杆冲击屈曲响应的典型结果,但已有文献及后来相关论文的模拟计算精度较低。为了提高典型扁长杆的冲击屈曲特性的计算分析精度,该文研究了扁长杆的冲击屈曲特性分析的有限元建模方法,改进了有限元模型边界条件的建模仿真度(考虑了转动铰配合间隙、摩擦等),并探讨了有限单元型式及尺度的选择,以壳单元或实体单元模型代替梁单元模型。研究表明:采用改进边界条件(考虑转动铰配合间隙、摩擦等)和薄壳单元或厚壳单元或实体单元的仿真模型比采用理想边界条件和梁单元的原模型的计算结果精度显著提高;基于改进模型的计算分析结果,揭示了该扁长杆受冲击载荷作用时的3维动态反向屈曲行为。  相似文献   

2.
为更准确地分析曲轴在运行工况下的动力学响应特性,采用Pro/E 3D软件对CA4D32柴油机曲轴、轴承等部件进行三维实体有限元建模,并将模型导入非线性多体动力学分析软件AVL Excite,添加连接单元,建立轴系非线性多体动力学模型,计算了一个工作循环的主轴承载荷变化.将非线性多体动力学轴系位移量计算结果作为曲轴三维实体有限元精细模型的载荷边界条件,完成了一个循环曲轴动应力计算.结果表明,与刚性体的分析方法相比较,采用非线性多体动力学分析方法可获得更接近实际的有限元模型的载荷边界条件,提高了曲轴强度的计算精度.  相似文献   

3.
针对现有多轴承支承轴系的刚度计算只限于主轴等对称回转结构,不能分析转动部分结构复杂并且受重力、切削力作用的数控摆台支承轴系的问题.提出一种数控摆台多支承轴系的轴承静刚度计算方法.首先,利用子结构方法对转动部分的有限元模型进行静力凝聚,并通过刚性耦合约束连接缩聚后的有限元模型与支承轴的梁单元模型;其次,结合角接触球轴承的刚度模型建立整个轴系的静力平衡方程,通过迭代求解得到各轴承的实际载荷和刚度.计算了四轴承支承轴系各轴承的载荷和刚度,与商业软件结果的误差小于1%,验证了上述方法的准确性.研究发现:重力作用下摆台支承轴承静刚度随摆角的改变发生显著变化.  相似文献   

4.
 管壳式热交换器因其可靠性高、适用性广泛成为很多工业部门中应用最广的热交换器。常规设计采用GB 151—1999《管壳式换热器》中当量等效近似方法,该当量等效力学模型和实际结构存在较大差异,尤其对于大型高参数热交换器,若无法应用常规设计方法,必须进行分析设计。有限元方法是最常见的分析设计方法。本文应用ANSYS通用有限元软件,对某实验台用热交换器建立了有限元模型,模型分别采用实体单元和梁、壳单元对固定管板式热交换器的壳体、管板和换热管所构成的固定连接结构进行了应力分析研究,以及温度载荷和压力载荷同时作用下的有限元分析。在实验台上进行与有限元分析中引用载荷相同的温度和压力载荷进行实验,并将实验结果与有限元分析结果进行比较,研究表明采用梁、壳单元或实体单元均能获得较精确的结果。考虑到热交换器的建模难度、工程精度需求和计算时间,对于大型高参数热交换器有限元分析采用梁、壳单元进行模拟,既可保证计算精度,又可降低建模难度,是切实可行的处理方法。  相似文献   

5.
钢桁梁桥在进行全桥有限元计算时,节点的精确模拟与否直接影响计算结果的准确性.传统空间梁单元模型只能反映结构的整体受力,不能反映局部详细应力分布,然而局部应力分布也是桥梁设计的重要依据.为了对比分析空间梁单元模型与精细组合单元模型节点刚性对全桥整体变形和应力分布的影响,以跨径90 m、桥面宽18m公路简支钢桁梁桥为研究背景,分别采用Midas Civil与ABAQUS有限元软件建立三维梁单元模型与精细组合单元模型.采用不同恒载与车辆荷载工况进行加载,对比分析了梁单元模型与组合单元模型相应杆件的应力分布与相对差值;最后通过实桥原位实验证明了精细组合单元模型计算结果的有效性.研究表明,三维梁单元模型简单易行,可以快速给出钢桁梁桥整体计算结果,而精细组合单元模型能够准确考虑节点刚性对于钢桁梁桥整体变形的影响,并给出关注部位详细应力分布.  相似文献   

6.
钢筋混凝土结构在冲击载荷作用下响应和破坏的研究受到了广泛的关注.本文通过建立3D细观力学模型,并结合新近研发的混凝土动态计算本构模型,模拟计算冲击载荷作用下钢筋混凝土梁的响应和破坏.3D细观力学模型假定混凝土是由砂浆基体、粗骨料和界面过渡层(Interfacial Transition Zone,简称ITZ层)三相组成的复合材料.混凝土动态计算本构模型考虑了压力相关性、剪切损伤、拉伸损伤、Lode角效应和材料应变率效应等主要因素.结果表明:数值模拟得到的冲击载荷、梁跨中点挠度的时程曲线以及裂纹的分布和扩展模式与实验结果吻合得较好;新提出的混凝土3D细观力学模型和新近研发的混凝土动态计算本构模型可以用来预测钢筋混凝土结构在冲击载荷作用下的响应和破坏.  相似文献   

7.
为研究钢筋混凝土深梁在低速冲击下的抗冲击性能和损伤机理,采用有限元软件ANSYS/LS-DYNA对不同冲击速度下深梁动力响应进行模拟.分析深梁的动态损伤过程及横截面的损伤分布,采用截面损伤因子对钢筋混凝土深梁的损伤程度进行定量评估;进一步分析边界条件、冲击位置对深梁抗冲击性能和损伤的影响.分析结果表明:建立的模型可以合理模拟低速冲击下深梁的动力响应;低速冲击下深梁先在局部范围内形成损伤,再向整体扩展,在回弹变形阶段冲击位置处局部损伤二次增大;冲击速度对深梁冲击位置附近的截面损伤程度影响显著;增强边界约束条件,能够提高低速冲击下深梁承载力,降低损伤程度;冲击位置对深梁的竖向变形和破坏位置有明显影响,但对损失程度影响轻微.  相似文献   

8.
由于墙梁受力情况复杂,在墙梁结构设计过程中,以有限元分析为基础是十分重要的.采用单元整体式模型、非线性材料本构关系及分布裂缝模型建立连续墙梁非线性有限元模型,并将计算结果与试验结构进行比较,二者吻合较好,说明此模型可以为墙梁结构的设计提供有限元基础分析.  相似文献   

9.
建立了人体头颈部有限元生物力学模型,并在颈椎与椎间盘间设置接触.以15,g 加速度载荷施加于头颈部有限元模型的头部,进行高速冲击有限元分析,得出颈椎与椎间盘的接触应力分布情况.结果表明:高速冲击下 C6、C7间易发生椎间盘突出;在头颈部有限元模型中设置接触条件,可以更好地模拟头颈部的生理特性和动力学响应情况  相似文献   

10.
动载作用下钢筋混凝土梁非线性有限元分析   总被引:1,自引:0,他引:1  
国内外大型的有限元软件有许多,就动力非线性分析而言,大型通用有限元软件ANSYS有明显的优势.以Suidan和Schnobrich[1]的试验为比照,利用大型通用有限元软件ANSYS对钢筋混凝土梁在爆炸荷载作用下的动力响应进行数值模拟,其中,混凝土采用ANSYS软件中特有的SOLID65单元类型及其对应的材料模型CONCRETE,钢筋采用LINK8杆单元和随动硬化双线性弹塑性(Kinematic Hardening Bilinear Plasticity)模型来实现.计算结果与Suidan和Schnobrich预示的响应十分吻合,并较好地模拟了梁的压碎和开裂过程.验证了该数值模拟方法以及有限元计算模型的正确性,为动载作用下钢筋混凝土梁非线性有限元分析提供了一有效方法.  相似文献   

11.
基于Timoshenko梁模型的旋转弹箭横向振动模态分析   总被引:2,自引:0,他引:2  
将旋转弹箭简化为Timoshenko旋转梁,基于有限单元法研究了其在自由飞行时的横向振动模态.采用Timoshenko梁模型,考虑陀螺效应和剪切效应,运用转子动力学和有限单元法的思想,建立旋转弹箭横向振动的有限元方程和频率方程.利用该频率方程,分别采用Rayleigh梁和Timoshenko梁模型对某旋转弹箭进行模态分析,对不同梁模型下的横向振动进动频率进行对比,并讨论弹箭转速和长径比对模态频率的影响.  相似文献   

12.
多支点轴支承载荷的分配直接影响设备的安全运行 ,各支承的标高是影响支承载荷分配的主要因素 ,只要建立了支承载荷对支承标高变化的灵敏度矩阵 ,便可方便地求得不同标高下的载荷分配 .传递矩阵推算方法需进行载荷和轴的简化才能求解 ,当载荷复杂且轴刚度变化大时便无法准确计算 .作者在不进行载荷和轴系简化的情况下 ,建立一种变刚度静不定梁的通用模型 ,推导出该梁任意截面的转角和挠度变形的一般方程 .由变形方程得出静不定梁求解的求解矩阵 ,导出支承载荷计算的灵敏度矩阵和线性公式 ,并对回转窑进行分析和计算 .研究结果表明 :该方法避免了由于载荷和轴系简化引起的计算误差 ,计算精度高 ;计算中对轴端支承形式也没有限制 ,是一种计算支承载荷灵敏度矩阵的通用方法  相似文献   

13.
分别用实体单元和梁杆单元建立双曲拱桥有限元模型(FEM),对其进行静动力的分析,并将得到的挠度、固有频率、振型等与现场实测结果进行比较.结果表明:梁杆单元模型的计算结果精度要略差于实体单元模型,但计算效率大大高于实体单元模型;对梁杆单元模型进行合理的模型修正,可以使其静动力特性更加符合实际,计算结果与实测结果的误差由原先的24.6%降低至8.33%以内.研究结果可为钢筋混凝土双曲拱桥的建模方法、模型修正和科学计算提供依据.  相似文献   

14.
基于某短杆钢箱桁架渡槽实例,通过ANSYS大型有限元计算软件,分别建立了渡槽节段的实体模型和简化的梁单元模型;然后,根据渡槽实际受力情况设置了跨中集中荷载以及均布荷载两种荷载工况形式,并进行这两种工况下的位移和应力比较,找出梁单元模型与实体单元模型间计算响应的差异;最后,验证了梁单元模型在短杆桁架位移计算中得到的结果在误差允许范围内,引入了梁单元模拟短杆钢箱桁架结构时的应力包络系数,以指导类似短杆钢箱桁架结构数值分析计算。  相似文献   

15.
文章根据梁单元有限元法,把柔性铰链视为变截面梁单元,建立了柔性铰链的单元刚度矩阵;在此基础上,建立了单向平动微位移工作台的有限元计算模型,得到了微位移工作台的位移输出特性;同时,选取不同的柔性铰链参数,用有限元分析软件对微位移工作台进行分析计算并与理论计算进行比较,结果表明2种方法计算的结果相吻合,验证了理论模型的正确...  相似文献   

16.
焊接圆钢管桁架在节点部位存在明显的局部柔度现象,在进行有限元分析时要精确模拟这种节点局部柔度就需要采用3D实体或壳单元模拟整个管桁架结构,这导致有限元分析的计算量大、效率低,不利于在工程设计中采用。为了简化计算过程,通常使用常规梁单元模拟钢管构件,并将管节点部位模拟成刚接形式。这种简化方法虽然提高了计算效率,但是却无法模拟出节点局部柔度导致的变形。为了解决这个问题,在常规梁单元模型基础上,在节点部位引入一个虚拟梁单元(Fictitious Beam Element,FBE)模拟节点的局部变形。虚拟梁单元的刚度可通过以往对管节点柔度研究所提出的参数公式进行等效。为了验证这种简化模型的准确性,对由T型管节点和Y型管节点组成的管桁架进行参数分析,共计算了12个管桁架模型,对这些管桁架模型分别采用3D有限元模型、常规刚接梁单元模型以及所提出的虚拟梁单元模型进行分析。研究结果表明:常规刚接梁单元模型会过低估计管桁架的变形,而采用虚拟梁单元模型则可以高精度地计算出管桁架的变形。  相似文献   

17.
基于有限元软件ANSYS,建立了双柱悬索拉线塔的壳单元精细化有限元模型和常规梁单元模型,在试验工况下模拟拉线塔主、斜材杆件应变随荷载加载等级的变化,并将两种模型的模拟结果与试验结果对比,同时也比较了两种有限元模型对结构整体响应的影响.结果表明:壳单元模型对拉线塔主、斜材应变的模拟结果均与试验结果吻合较好,梁单元模型对主材应变的模拟结果与试验结果吻合较好,对斜材应变的模拟结果与试验结果误差较大;上述两种有限元模型对双柱悬索拉线塔的宏观响应指标的影响较小,对杆件内力的影响较大.  相似文献   

18.
以基于细长杆理论曲梁单元建立柔性管有限元模型,对柔性管侧向屈曲进行非线性有限元分析;采用等效螺旋钢缆模拟整个抗拉伸层;运用非线性弹簧单元、接触单元和欧拉梁单元模拟其他层作用;考虑湿环境下弯矩和轴向压力共同作用;分析了柔性管侧向屈曲载荷、模态和屈曲后应力对于屈曲载荷的影响;进行了参数敏感性分析.运用Matlab程序语言根据解析解公式建立程序.将数值模拟结果与已有文献结果和解析解结果进行对比,验证了曲梁方法的可行性.结果可为柔性管设计中的出曲校核提供数值模拟方法.  相似文献   

19.
水下爆炸圆柱壳塑性动态响应实验及数值计算   总被引:7,自引:3,他引:4  
采用实验与数值模拟相结合的方法,对圆柱壳结构在水中受到柱形TNT炸药产生的冲击载荷作用下的动力响应过程进行研究.对不同装药量、爆炸距离和爆炸角度的影响分别进行了实验,利用大型有限元软件MSC.DYTRAN,对流场边界采用流-同耦合的处理方法进行计算,并将计算结果与实验数据进行对比,结果表明,计算结果与实验结果具有较好的一致性.证明了在有限区域内采用MSC.DYTRAN有限元软件中的流-固耦合方法进行水下爆炸的数值计算是可行的.  相似文献   

20.
为了获得脆性颗粒材料组成的散粒体系统在动载荷作用下的力学响应,对圆筒内散粒体系统在梯形载荷作用下的力学行为进行了数值研究.建立了链接模型、接触模型以及弹簧-球单元破碎模型;基于离散单元法编制了计算程序,分析了梯形载荷作用下的散粒体系统动力学响应;采用OpenGL图形显示了部分颗粒的破碎过程.结果表明,在梯形载荷作用下,对不同的载荷值,散粒体系统存在相应的暂时稳定状态,并且随着载荷大小的递增,系统达到稳定状态的时间越短,系统的变形也越小;计算过程中发现部分粒子发生破碎,且上层粒子首先被冲击破碎,破碎情况最为严重.研究结果对发射装药发射安全性有着重要的理论意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号