首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
In situ U-Pb dating of titanite by LA-ICPMS   总被引:4,自引:0,他引:4  
Titanite is an ideal mineral for U-Pb isotopic dating because of its relatively high U,Th and Pb contents.Here,we developed a technique for U-Pb dating of titanite using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS.Standards of titanite (BLR-1 and OLT-1) and zircon (91500 and GJ-1) were dated using single spot and line raster scan analytical methods.To check the matrix effect,titanite (BLR-1) and zircon (91500) standards were analyzed as the external standards.The weighted mean 206 Pb/238 U ages of OLT-1 titanite are 1015±5 Ma (2,n=24) and 1017±6 Ma (2,n=24) by single spot and line raster scan analyses,respectively,using BLR-1 titanite as the external standard.These ages are consistent with its reference age of about 1014 Ma.However,using 91500 zircon as the external standard,the weighted mean 206 Pb/238 U ages are 917±4 Ma (2,n=24) and 927±5 Ma (2,n=24) for BLR-1 titanite,and 891±4 Ma (2,n=24) and 901±5 Ma (2,n=24) for OLT-1 titanite by single spot and line raster scan analyses,respectively.It is evident that these ages are ~12% younger than their reference values.Our results reveal that significant matrix effect does exist between different kinds of minerals during LA-ICPMS U-Pb age determination,whereas it is insignificant between same minerals.Therefore,same mineral must be used as the external standard for fractionation corrections during in situ LA-ICPMS U-Pb age analysis.In addition,we determined U-Pb ages for titanites from the Early Cretaceous Fangshan pluton,which indicates a rapid cooling history of this pluton.  相似文献   

2.
Simultaneous in-situ determination of U-Pb ages and 20 trace elements of three international zircon standards (91500, GJ1 and TEMORA 1) and one laboratory zircon standard (SK10-2) separated from Cenozoic fine-grained gabbro was carried out on quadrupole ICP-MS equipped with 193 nm excimer laser in 20 μm spot size. The weighted mean ^206Pb/^238U ages of 91500, GJ1 and TEMORA 1 are 1064.4±4.8 Ma (2σ), 603.2±2.4 Ma (2σ) and 418.2±2.4 Ma (2σ), respectively. The relative standard deviations (RSDs) of ^206Pb/^238U ages (2σ) are less than 2.2% for single measurements and 0.6% for weighted means. The obtained weighted mean ^206Pb/^238U ages of three standard zircons agree with the recommended values within 2σrerror. The weighted mean ^206Pb/^238U age of SK10-2 is 31.42=0.25 Ma (2σ) and the RSDs of ^206Pb/^238U ages (2σ) are between 2.4% and 5.7% for single measurements and less than 0.8% for weighted mean. The obtained weighted mean ^206Pb/^238U age is in good agreement with the age obtained by Yuan (2004). Trace element concentrations of NIST612 and NIST614 obtained under the same LA-ICP-MS operating conditions agree with the recommended values within analytical error. The results indicate that it is possible to measure U-Pb age and trace elements simultaneously by LA-ICP-MS in a small spot size of 20μm.  相似文献   

3.
The Miaoershan uranium(U)ore field in northeastern Guangxi is one of the important granite-related U deposits in south China and is closely related to the Douzhashan U-bearing granite.The Douzhashan granite contains primary U-rich accessory minerals,including monazite(UO2=0.98-1.75 wt%)and xenotime(UO2=1.48-6.14 wt%).Primary monazite and xenotime yield chemical ages of 231±28 Ma and 230±38 Ma by electron microprobe analysis and U-Pb isotopic ages of 220±6 Ma and 211±7 Ma by laser ablation-inductively coupled-mass spectrometry respectively.These ages demonstrate that the Douzhashan granite formed during the period of Indosinian magmatic activity.Back scattered electron imaging shows that monazite and xenotime are commonly altered to assemblages of low-U synchisite and apatite,which was associated with loss of U to hydrothermal fluids.U-Th-Pb analyses of secondary apatite yielded a chemical age of 136±17 Ma,which corresponds to the timing of Cretaceous-Tertiary crustal extension in south China.We suggest that the heat and CO2required for mineralization was the result of Yanshanian crustal extension,and that this triggered the breakdown of U-rich accessory minerals in the Douzhashan U-bearing granite.Uranium remobilization from the Douzhashan granite provided materials for mineralization within the granite and/or surrounding country rocks.Therefore,a combination of Indosinian compression and Yanshanian extensional overprint produced the hydrothermal U deposits associated with the Douzhashan granite.  相似文献   

4.
In order to constrain the formation time of high-grade metamorphic rocks in the Qilian Mountains, U-Pb zircon dating was carried out by using LA-ICPMS technique for a paragneiss of the Hualong Group in the Qilian Mountains basement series and a weakly foliated granite that intruds into the Hualong Group. Zircons from the paragneiss consist dominantly of detrital magma zircons with round or sub-round shape. They have 207Pb/206Pb ages mostly ranging from 880 to 900 Ma, with a weighted mean age of 891 ±9 Ma, which is interpreted as the magma crystallization age of its igneous provenance and can be taken as a lower age limit for the Hualong Group. Magma crystallization age for the weak-foliated granite is 875±8 Ma, which can be taken as an upper age limit for the Hualong Group. Accordingly, the formation time of the Hualong Group is constrained at sometime between 875 and 891 Ma. A few zir- cons from both paragneiss and weak-foliated granite display old inherited ages of 1000 to 1700 Ma and young metamorphic ages of Early Paleozoic. The zircon age distribution pattern confirms that the Qilian Mountains and the northern margin of Qaidam Basin had a united basement, with geotectonic affinity to the Yangtze Block. The results also reveal that sediments of the Hualong Group formed by rapid accumulation due to rapid crustal uplift-erosion. This process may result from intensive Neoproterozoic orogenesis due to assembly of the suppercontinent Rodinia.  相似文献   

5.
Zircon CL imaging and SHRIMP U-Pb dating were carried out for migmatite in the Dabie orogen. Zircons from the Manshuihe migmatite show clear core-rim structures. The cores display sector or weak zoning and low Th/U ratios of 0.01 to 0.17, indicating their precipitation from metamorphic fluid. They yield a weighted mean age of 137±5 Ma. By contrast, the rims exhibit planar or nebulous zoning with relatively high Th/U ratios of 0.35 to 0.69, suggesting their growth from metamorphic melt. They give a weighted mean age of 124±2 Ma. Zircons from the Fenghuangguan migmatite also display core-rim structures. The cores are weakly oscillatory zoned or unzoned with high Th/U ratios of 0.21 to 3.03, representing inherited zircons of magmatic origin that experienced different degrees of solid-state recrystallization. SHRIMP U-Pb analyses obtain that its protolith was emplaced at 768±12 Ma, consistent with middle Neoproterozoic ages for protoliths of most UHP metaigneous rocks in the Dabie-Sulu orogenic belt. By contrast, the rims do not show significant zoning and have very low Th/U ratios of 0.01 to 0.09, typical of zircon crystallized from metamorphic fluid. They yield a weighted 206Pb/238U age of 137±4 Ma. Taking the two case dates together, it appears that there are two episodes of zircon growth and thus migmati-tization at 137±2 Ma and 124±2 Ma, respectively, due to metamorphic dehydration and partial melting. The appearance of metamorphic dehydration corresponds to the beginning of tectonic extension thus to the tectonic switch from crustal compression to extension in the Dabie orogen. On the other hand, the partial melting is responsible for the extensional climax, resulting in formation of coeval migmatite, granitoid and granulite. They share the common protolith, the collision-thickened continental crust of mid-Neoproterozoic ages.  相似文献   

6.
This study presents zircon and garnet ages of a mafic granulite from the high-grade Variscan basement of the Black Forest, Germany and discuss isotope closure temperature of garnet Sm-Nd and U-Pb systems. Zircon grains yield 207Pb/206Pb ages between ~340 and ~414 Ma by the U-Pb and evaporation methods. In contract, garnet dating gives Sm-Nd and Pb-Pb isochron ages of (398±3) Ma and (411±14) Ma, respectively, which are older than most of zircon ages. These data imply that most of zircons lost radiogenic Pb, probably due to metamictization or recrystallisation during the granulite-facies metamorphism (~800℃) at ~340 Ma. Garnet Sm-Nd and U-Pb systems preserve chronological information of pro-grade metamorphism, probably profiting from a fluid-absence metamorphic environment. These results demonstrate that garnet mineral can be a better candidate than zircon mineral to date high-grade metamorphism by the U-Pb and Sm-Nd methods in some cases.  相似文献   

7.
Early-crystallizing chromian spinel(Cr-spinel) in the Nagqu ophiolite has high Os and low Re contents,and it is resistant to alteration during serpentinization,weathering and metamorphism.The chemical composition of primitive magma is preserved in Cr-spinel,which makes it suitable for determining the initial Os-isotope composition of the mantle source.This study presents Cr-spinel Os isotopes and zircon U-Pb ages for cumulate dunite and gabbro,respectively,in the same cumulate section of the ophiolite at Nagqu in Tibet.The results shed light on the formation and evolution of lithospheric mantle.The Nagqu ophiolite is located in the central part of the Bangong-Nujiang suture zone.It is a remnant of the Neotethyan oceanic crust,and contains cumulate dunite and gabbro.Zircon from the gabbro yielded a weighted mean 206 Pb/238 U age of 183.7±1 Ma.Cr-spinel exhibits Os values of 0.2 to 0.3,suggesting that the mantle source for the dunite is similar to that of carbonaceous chondrites.Thus,the Tibetan lithosphere is primarily a relic of Tethyan oceanic lithosphere,which has formed by the transformation of the normal asthenospheric mantle in the Mesozoic.This is the first study to combine the spinel Os isotopes with accurate zircon U-Pb ages to constrain the geochemical characteristics of the mantle source for the ophiolite.  相似文献   

8.
The latest eruptions in two important Mesozoic volcanic basins of Fanchang and Ningwu located in the middle-lower reaches of the Yangtze River formed the bimodal volcanic rocks of the Kedoushan Formation and ultrapotassic volcanic rocks of the Niangniangshan Formation, respectively. The representative volcanic rocks of the two Formations were selected for LA-ICPMS zircon U-Pb dating. The results indicate that there exist a large amount of magmatic zircons as indicated by high Th/U ratios in these volcanic rocks. The weighted mean age of 21 analyses is 130.7±1.1 Ma for the Kedoushan Formation, and that of 20 analyses is 130.6±1.1 Ma for the Niangniangshan Formation. These U-Pb ages are interpreted to represent the formation times of the volcanic rocks. In combination with other known geochronological data for Mesozoic volcanic rocks from the Lower Yangtze region, it is proposed that the latest volcanic activations in the Jinniu, Luzong, Fanchang and Ningwu volcanic basins probably came to end prior to ca. 128 Ma. There is no significant time interval between the early and later volcanic activities in the Luzong and Ningwu basins, suggesting a short duration of volcanic activities and thus implying the onset of an extensional tectonic setting at about 130 Ma in the Lower Yangtze region. Integrated studies reveal that the Early Cretaceous magmatic activities and their geochronological framework in the Lower Yangtze region are a response to progressively dynamic deep processes that started with the transformation of tectonic setting from compression to extension, followed by delaminating of the lower part of the thickened lithosphere, lithospheric thinning, asthenosphere upwelling, and crust-mantle interaction.  相似文献   

9.
Zircom U-Pb age and Hf isotope analyses were made on gneissic granite and garnet-mica two-feldspar gneiss from the Helanshan Group in the Bayan Ul-Helan Mountains area, the western block of the North China Craton (NCC). Zircons from the gneissic granite commonly show core-mantle-rim structures, with magmatic core, metamorphic mantle and rim having ages of 2323±20 Ma, 1923±28 Ma and 1856±12 Ma, respectively. The core, mantle and rim show similar Hf isotope compositions, with single-stage depleted mantle model ages (TDM1) of 2455 to 2655 Ma (19 analyses). Most of the detrital zircons from the garnet-mica two-feldspar paragneiss have a concentrated U-Pb age distribution, with a weighted mean 207Pb/206Pb age of 1978±17 Ma. A few detrital zircons are older (2871 to 2469 Ma). The age for metamorphic overgrown rim was not determined because of strong Pb loss due to their high U content. The zircons show large variation in Hf isotope composition, with TDM1 ages of 1999 to 3047 Ma. In com- bination with previous studies, the main conclusions are as follows: (1) protolith of the khondalite se- ries in the Helanshan Group formed during Palaeoproterozoic rather than the Archaean as previously considered; (2) The results lend support to the contention that there is a huge Palaeoproterozoic Khondalite (metasedimentary) Belt between the Yinshan Mountains Block and the Ordos Block in the Western Block of NCC; (3) The widely-distributed bodies of early Palaeoproterozoic orthogneisses in the Khondalite Belt might be one of the important sources for detritus material in the khondalite series; (4) Collision between the Yinshan Block, the Ordos Block and the Eastern Block occurred in the same tectonothermal event of late Palaeoproterozoic, resulting in the final assembly of the NCC.  相似文献   

10.
Granite at Penggongmiao is a large batholith in the Nanling Range, with an outcrop area of over 900 km 2 . There are many scheelite-quartz veins around the granite. LA-ICP-MS U-Pb dating was carried out for zircons from the granite. The middlecoarse-grained biotite granite has U-Pb ages of 435 to 436 Ma. Ages of 426.5±2.5 Ma were obtained for aplitic dyke cross-cutting the granite. The scheelite of magmatic origin in the aplite dyke was identified from petrographic investigation. This demonstrates that W-bearing granites of Early Paleozoic (corresponding to the Caledonian orogensis in the traditional sense) occur in the Nanling Range. This finding has important implications for the ore-forming potential of Paleozoic granites and on the extent of Mesozoic mineralization. Thus it merits performing an intensive study of Paleozoic granites in South China. The occurrences of aplite or microgranite may be an indicative of the Caledonian tungsten granites and associated W mineralization.  相似文献   

11.
The Qilian Mountain is considered a part of the Cen- tral Orogenic Belt of China[1]. The Central Orogenic Belt of China, extending for a distance of about 4000 km long in the E-W direction from the east coast west- ward through the mainland China all the …  相似文献   

12.
Geological records of Neoproterozoic magmaticevents have recently been identified in the central Phanerozoic orogenic belts of China[1]. In regions of east Qinling orogen[2], Dabie-Sulu orogen[3], north Qaidam Basin orogen[4―6], and southwest Tarim Basin…  相似文献   

13.
The LA-ICP-MS U-Pb dating of hundreds of detrital zircon grains from the Sinian sandstones of Liantuo formation and tillites of Nantuo formation at Sanxia area in Yichang identified 3319?3508 Ma zircon grains. Their 207Pb/206Pb and 206Pb/238U ages show excellent agreement (concordia degree 99%?100%). Their CL images exhibit well-developed oscillatory zoning and the Th/U ratios are within 0.46?0.76, implying that they are igneous zircons which formed during middle-early Archean. These zircons are the oldest ones discovered in Yangtze craton until now. However, the detrital zircons with ages older than 3.3 Ga in the metamorphic rocks of Kongling group were not found by further investigation, which suggests the presence of crust older than high-grade metamorphic Kongling terrain in Yangtze craton.  相似文献   

14.
Located in the east portion of the North Orogenic Belt, the Songliao Basin is bounded by the Da Hinggan Mountains in the west, the Xiao Hinggan Mountains in the north, the Zhangguangcai Range in the east, and the North China Craton (NCC) in the south (Fig…  相似文献   

15.
Mesozoic granitoids are widespread in the Qinling-Dabie-Sulu orogenic belt. Precise U-Pb dating on these granitoids can reveal the evolution of the continental collision orogen and thus provide information on the nature of magma sources. This study presents zircon LA-ICP-MS U-Pb dating and whole-rock geochemical analyses for two intrusions at Changba and Huangzhuguan in western Qinling. Zircon U-Pb ages for central and marginal phases of the Huangzhuguang intrusion are 214±1 Ma and 213±3 Ma, respectively. Zircons from the Changba intrusion yield a dominant cluster with an U-Pb age of 213±2 Ma. Collectively, these ages are younger than ages of 220 to 240 Ma for ultrahigh-pressure metamorphism due to the continental collision between the South China Block and the North China Block, corresponding to syn-exhumation magmatism. Some inherited zircons occur in the Changba intrusion, yielding a weighted mean of 206Pb/238U ages at 757±14 Ma. This indicates that the Changba intrusion has the crustal source of mid-Neoproterozoic ages and a tectonic affinity to the South China Block. Geochemically, the two intrusuons are both rich in LILE and LREE but depleted in HFSE and HREE, similar to arc-type igneous rocks. The Huangzhuguang intrusion exhibits linear correlations between SiO2 and the other major oxides, implying chemical evolution from a cognate magma source. It contains mafic enclaves, suggesting possible mixing of felsic-mafic magmas. The Changba granite is rich in Si and K but poor in Fe and Mg as well as has a high value of Fe*, suggesting strong differentiation of granitic magma. Therefore, the two intrusions were derived from the Late Triassic anatexis of the continental crust of different compositions in the northern margin of South China Block. This process may be coupled with exhumation of the subducted continental crust in the stage of late collision.  相似文献   

16.
Different types of UHP metamorphic rocks havebeen recently discovered in the Altyn Tagh[1—4], the north-ern margin of Qadam Basin[5—7], the southwestern Tian-shan Mountains[8,9] and the northern Qinling Moun-tains[10,11] in Central and Western China. And these areashave attracted focus attention of geologists at home andabroad to the studying of UHP metamorphism and conti-nental deep subduction. However, as newly discoveredUHP metamorphic terranes, some questions have beenarisen abou…  相似文献   

17.
An internal structural study was conducted to investigate U-Pb age, trace elements and Hf isotopes of basaltic zircons from the Batamayineishan Formation. The basalt was obtained from drill well San-Can 1 on the eastern Luliang uplift within the Junggar Basin. Trace element data of zircons show that all samples are magmatic, with similar REE patterns, including positive Ce (δCe=5.06–134), but negative Eu (δEu=0.06⦒0.55) anomalies and enrichment in heavy rare earth elements. Among 25 grains, the concordant ages were subdivided into three groups; ages of 300.4±1.3 Ma (n=11), 339.2±2.7 Ma (n=3) and 392.0±1.7 Ma (n=8). Three remaining grains were nearly concordant, with 206Pb/238U ages of 510±7, 488±6 and 453±6 Ma, respectively. The youngest concordant age (i.e., 300.4±1.3 Ma) could be interpreted as the formation age of the studied basaltic rock; this is consistent with the sampling position at the upper part of the Batamayineishan Formation. On the other hand, ages such as Ordovician and early Devonian are consistent with the ages of island-arc volcanic rocks (enrichment in Pb) or ophiolites around the basin. Moreover, the positive ɛ Hf(t) values of the early and middle Paleozoic zircons (+3.6–+10.5) may suggest that the basement traversed by the studied volcanic rocks may be Paleozoic in age, formed from the residual oceanic crust and island-arc complex. The ɛ Hf(t) values (+4.2–+17.1) of the late Paleozoic (∼300.4 Ma) zircons suggest that the basaltic magmas were derived from partial melting of the asthenospheric mantle or depleted lithospheric mantle. These magmas were slightly contaminated by the existence of early-middle Paleozoic materials. The late Carboniferous basalts represent direct eruption of mantle-derived magmas at the upper crustal level during a post-collisional tectonic setting. We therefore consider that extensive vertical growth of the continental crust to have occurred before the late Carboniferous.  相似文献   

18.
This note reports the SHRIMP U-Pb data of zircons from the Caledonian Xiongdian eclogite, western Dabie Mountains. Zircons from the rock occur mainly in garnet and other metamorphic minerals with sharp boundaries and exhibit textures growing under metamorphic conditions. Analyses of 7 grains give 206Pb/238U ages ranging from 335 to 424 Ma, showing a certain degree of radiogenic lead loss. This suggests a minimum age of (424±5) Ma for the metamorphic zircons, as well as the high-pressure metamorphic event. The outer peripheral zone of a zircon gives 206Pb/238U age of about 300 Ma. Combined with Sm-Nd, 40Ar-39Ar, U-Pb and 207Pb/206Pb ages, the peak metamorphism of the Xiongdian eclogite is documented between 424—480 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号