首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 31 毫秒
1.
讨论了Cartan-Hartogs域上Khler-Einstein度量的显表达式以及该度量与Bergman度量的等价性问题。得到了Cartan-Hartogs域上Khler-Einstein度量显表达式的统一公式。运用该公式与连续函数的性质以及Bergman度量显表达式的一个统一公式,得到了这类域上Khler-Einstein度量和Bergman度量等价性的统一证明。  相似文献   

2.
进一步讨论了第四类Cartan-Hartogs域上Khler-Einstein度量的显表达式问题。运用该度量的显表达式以及Bergman度量的显表达式与连续函数的性质,得到了第四类Cartan-Hartogs域上Khler-Einstein度量和Bergman度量等价的简单证明。  相似文献   

3.
证明在第一类Cartan-Hartogs域上,对于Bergman度量下平方可积调和(r,s)形式空间成立Hr,s2(YI(N;m,n;k))=0,(∨)r s≠N mn.  相似文献   

4.
研究了第三类Cartan-Hartogsl,YⅢ上一类与Bergman核函数有关的双全纯不变量JYⅢ,以及当点(W,Z)趋于边界偏导YⅢ时JYⅢ的极限.  相似文献   

5.
进一步讨论了第一类超Cartan域上Khler-Einstein度量与Bergman度量的等价问题.运用Khler-Einstein度量与Bergman度量的显表达式以及连续函数的一些性质,得到了第一类超Cartan域上这两类度量等价的简单证明.  相似文献   

6.
利用全纯自同构映射,求出了第二类Cartan-Hartogs域Y11上Bergman度量矩阵行列式det T(W,Z;W^-,Z^-)的显表达式,从而得到Yu上的双全纯不变量JYH.进一步研究了当点(W,Z)趋于边界δYH时JYH的极限。有如下结论:当点(W.Z)→(W0,Z0)∈δYH(|W0|≠0)时,JYH存在极限π^m+n(m+1+N)^m+n)/(m+N);当点(W.Z)→(0,Z0)∈δYH时,JYH没有极限.  相似文献   

7.
本文证明了二连通域上双曲度量与Bergman度量的等价性。  相似文献   

8.
证明了C2中的广义Thullen域Dp,q={(z1,z2)∈C2|z1|2/p+|z2|2/q<1},其中p,q>0,H2r,s(Dp,q)=0,对r+s≠2.  相似文献   

9.
本文运用广义Hua-矩阵不等式给出了第一类 Cartan-Hartogs 域上的Bers型空间上的一个加权复合算子的有界性和紧致性的刻画.  相似文献   

10.
11.
The main point is the calculation of the Bergman kernel for the so-called Cartan-Hartogs domains. The Bergman kernels on four types of Cartan-Hartogs domains are given in explicit formulas. First by introducing the idea of semi-Reinhardt domain is given, of which the Cartan-Hartogs domains are a special case. Following the ideas developed in the classic monograph of Hua, the Bergman kernel for these domains is calculated. Along this way, the method of “inflation”, is made use of due to Boas, Fu and Straube.  相似文献   

12.
    
《科学通报(英文版)》1999,44(21):1947-1947
The main point is the calculation of the Bergman kernel for the so-called Cartan-Har-togs domains. The Bergman kernels on four types of Cartan-Hartogs domains are given in explicit formulas. First by introducing the idea of semi-Reinhardt domain is given, of which the Cartan-Hartogs domains are a special case. Following the ideas developed in the classic monograph of Hua, the Bergman kernel for these domains is calculated. Along this way, the method of \"inflation\", is made use of due to Boas, Fu and Straube.  相似文献   

13.
    
The Einstein-Kahler metric for the Cartan-Hartogs domain of the second type is described. Firstly, the Monge-Ampère equation for the metric to an ordinary differential equation in the auxiliary function X=X(z,w) is reduced, by which an implicit function in X is obtained. Secondly, for some cases, the explicit forms of the complete Einstein-Kahler metrics on Cartan-Hartogs domains which are the non-homogeneous domains are obtained. Thirdly, the estimate of holomorphic sectional curvature under the Einstein-Kahler metric is given, and in some cases the comparison theorem for Kobayashi metric and Einstein-Kahler metric on Cartan-Hartogs domain of the second type is established.  相似文献   

14.
给出了第三类超Caftan域YⅢ(N,q,K)在Bergman度量下的Ricci曲率,从而得知YⅢ(N,q,K)是非齐性域的条件;同时知道它具有齐性域同样优美的解析性质;得到了非齐性域四个经典度量之间的关系:Einstein-Kahler度量和Bergman度量是等价的,Einstein-Kahler度量和Kobayashi度量有比较定理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号