首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Z  Yan H  Wang K  Kuang T  Zhang J  Gui L  An X  Chang W 《Nature》2004,428(6980):287-292
The major light-harvesting complex of photosystem II (LHC-II) serves as the principal solar energy collector in the photosynthesis of green plants and presumably also functions in photoprotection under high-light conditions. Here we report the first X-ray structure of LHC-II in icosahedral proteoliposome assembly at atomic detail. One asymmetric unit of a large R32 unit cell contains ten LHC-II monomers. The 14 chlorophylls (Chl) in each monomer can be unambiguously distinguished as eight Chla and six Chlb molecules. Assignment of the orientation of the transition dipole moment of each chlorophyll has been achieved. All Chlb are located around the interface between adjacent monomers, and together with Chla they are the basis for efficient light harvesting. Four carotenoid-binding sites per monomer have been observed. The xanthophyll-cycle carotenoid at the monomer-monomer interface may be involved in the non-radiative dissipation of excessive energy, one of the photoprotective strategies that have evolved in plants.  相似文献   

2.
Pbycobilisomes (PBS) are able to transfer absorbed energy to photosystem Ⅰ and Ⅱ, and the distribution of light energy between two photosystems is regulated by state transitions. In this study we show that energy transfer from PBS to photosystem Ⅰ (PSI) requires ApcD. Cells were unable to perform state transitions in the absence of ApcD. The apcD mutant grows more slowly in light mainly absorbed by PBS, indicating that ApcD-dependent energy transfer to PSI is required for optimal growth under this condition. The apcD mutant showed normal blue-light induced quenching, suggesting that ApcD is not required for this process and state transitions are independent of blue-light induced quenching. Under nitrogen fixing condition, the growth rates of the wild type and the mutant were the same, indicating that energy transfer from PBS to PSI in heterocysts was not required for nitrogen fixation.  相似文献   

3.
Cyanobacteria are abundant throughout most of the world's water bodies and contribute significantly to global primary productivity through oxygenic photosynthesis. This reaction is catalysed by two membrane-bound protein complexes, photosystem I (PSI) and photosystem II (PSII), which both contain chlorophyll-binding subunits functioning as an internal antenna. In addition, phycobilisomes act as peripheral antenna systems, but no additional light-harvesting systems have been found under normal growth conditions. Iron deficiency, which is often the limiting factor for cyanobacterial growth in aquatic ecosystems, leads to the induction of additional proteins such as IsiA (ref. 3). Although IsiA has been implicated in chlorophyll storage, energy absorption and protection against excessive light, its precise molecular function and association to other proteins is unknown. Here we report the purification of a specific PSI-IsiA supercomplex, which is abundant under conditions of iron limitation. Electron microscopy shows that this supercomplex consists of trimeric PSI surrounded by a closed ring of 18 IsiA proteins binding around 180 chlorophyll molecules. We provide a structural characterization of an additional chlorophyll-containing, membrane-integral antenna in a cyanobacterial photosystem.  相似文献   

4.
Loll B  Kern J  Saenger W  Zouni A  Biesiadka J 《Nature》2005,438(7070):1040-1044
Oxygenic photosynthesis in plants, algae and cyanobacteria is initiated at photosystem II, a homodimeric multisubunit protein-cofactor complex embedded in the thylakoid membrane. Photosystem II captures sunlight and powers the unique photo-induced oxidation of water to atmospheric oxygen. Crystallographic investigations of cyanobacterial photosystem II have provided several medium-resolution structures (3.8 to 3.2 A) that explain the general arrangement of the protein matrix and cofactors, but do not give a full picture of the complex. Here we describe the most complete cyanobacterial photosystem II structure obtained so far, showing locations of and interactions between 20 protein subunits and 77 cofactors per monomer. Assignment of 11 beta-carotenes yields insights into electron and energy transfer and photo-protection mechanisms in the reaction centre and antenna subunits. The high number of 14 integrally bound lipids reflects the structural and functional importance of these molecules for flexibility within and assembly of photosystem II. A lipophilic pathway is proposed for the diffusion of secondary plastoquinone that transfers redox equivalents from photosystem II to the photosynthetic chain. The structure provides information about the Mn4Ca cluster, where oxidation of water takes place. Our study uncovers near-atomic details necessary to understand the processes that convert light to chemical energy.  相似文献   

5.
Illumination changes elicit modifications of thylakoid proteins and reorganization of the photosynthetic machinery. This involves, in the short term, phosphorylation of photosystem II (PSII) and light-harvesting (LHCII) proteins. PSII phosphorylation is thought to be relevant for PSII turnover, whereas LHCII phosphorylation is associated with the relocation of LHCII and the redistribution of excitation energy (state transitions) between photosystems. In the long term, imbalances in energy distribution between photosystems are counteracted by adjusting photosystem stoichiometry. In the green alga Chlamydomonas and the plant Arabidopsis, state transitions require the orthologous protein kinases STT7 and STN7, respectively. Here we show that in Arabidopsis a second protein kinase, STN8, is required for the quantitative phosphorylation of PSII core proteins. However, PSII activity under high-intensity light is affected only slightly in stn8 mutants, and D1 turnover is indistinguishable from the wild type, implying that reversible protein phosphorylation is not essential for PSII repair. Acclimation to changes in light quality is defective in stn7 but not in stn8 mutants, indicating that short-term and long-term photosynthetic adaptations are coupled. Therefore the phosphorylation of LHCII, or of an unknown substrate of STN7, is also crucial for the control of photosynthetic gene expression.  相似文献   

6.
比较了高温对来源于海南和贵州的2种不同生态型麻疯树的光能利用和分配特性的影响.结果表明,温度升高引起了2种麻疯树叶片PSⅡ最大光能转化效率(Fv/Fm)的降低和初始荧光(Fo)的上升,部分抑制了PSⅡ的功能.与贵州麻疯树相比,海南麻疯树在中度高温胁迫(30~40℃)时,增加了对过量激发能的热耗散能力,使其维持较高的光能转化效率.当温度升至45℃,虽然热耗散机制受到破坏,海南麻疯树仍然有7%的光能用于光化学反应,而贵州麻疯树的这一比例降为0%.本研究的结果表明,海南麻疯树比贵州麻疯树具有更强的高温耐受能力.  相似文献   

7.
P Jordan  P Fromme  H T Witt  O Klukas  W Saenger  N Krauss 《Nature》2001,411(6840):909-917
Life on Earth depends on photosynthesis, the conversion of light energy from the Sun to chemical energy. In plants, green algae and cyanobacteria, this process is driven by the cooperation of two large protein-cofactor complexes, photosystems I and II, which are located in the thylakoid photosynthetic membranes. The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules. The structural information on the proteins and cofactors and their interactions provides a basis for understanding how the high efficiency of photosystem I in light capturing and electron transfer is achieved.  相似文献   

8.
光照对盾叶薯蓣荧光光谱和叶绿体结构的影响   总被引:1,自引:0,他引:1  
对生长在10,55,100,270 μmol·m-2·s-1光强下弱光生态型盾叶薯蓣的长期适应性进行了测定.结果表明,生长光条件不同其77 K荧光峰也出现明显的变化.弱光条件(10,55 μmol·m-2·s-1)下无F595和F740荧光峰(55 μmol·m-2·s-1下有F740肩峰),但有F720主峰;能量主要分配到光系统II;暗适应后引起了LHCII和CP43组成的功能发生改变;红光诱导分配到光系统II的能量比例下降;类囊体膜折叠指数较大,淀粉粒较小.较强光条件(100,270 μmol·m-2·s-1)下77 K荧光光谱无F720,但有F740峰较强;光系统II的激发能量较强;暗适应后增加了LHCI到PSI-RC的传递效率;红光诱导分配到光系统II的能量比例下降;类囊体膜折叠指数较小,淀粉粒较大.  相似文献   

9.
Bellafiore S  Barneche F  Peltier G  Rochaix JD 《Nature》2005,433(7028):892-895
Photosynthetic organisms are able to adjust to changing light conditions through state transitions, a process that involves the redistribution of light excitation energy between photosystem II (PSII) and photosystem I (PSI). Balancing of the light absorption capacity of these two photosystems is achieved through the reversible association of the major antenna complex (LHCII) between PSII and PSI (ref. 3). Excess stimulation of PSII relative to PSI leads to the reduction of the plastoquinone pool and the activation of a kinase; the phosphorylation of LHCII; and the displacement of LHCII from PSII to PSI (state 2). Oxidation of the plastoquinone pool by excess stimulation of PSI reverses this process (state 1). The Chlamydomonas thylakoid-associated Ser-Thr kinase Stt7, which is required for state transitions, has an orthologue named STN7 in Arabidopsis. Here we show that loss of STN7 blocks state transitions and LHCII phosphorylation. In stn7 mutant plants the plastoquinone pool is more reduced and growth is impaired under changing light conditions, indicating that STN7, and probably state transitions, have an important role in response to environmental changes.  相似文献   

10.
以陆化导致的退化秋茄林为研究对象, 通过周期性补水实验, 从沉积物的理化性质和植物生理指标的变化, 探明补水对秋茄成林的修复效果。主要结果如下: 1) 补水后沉积物的含水量、pH、盐度、总氮和有机质含量总体上高于对照组, 补水改善了沉积物的营养和盐度条件; 2) 补水修复显著提高植物的净光合速率、水分利用效率和叶绿素a 含量(P<0.05), 降低胞间CO2浓度, 有效地改善退化秋茄林的光合作用状态, 增强秋茄叶片吸收和转化光能的能力; 3) 对照组植物光系统Ⅱ(PS Ⅱ)最大荧光效率(Fv/Fm)显著低于0.8 (常用阈值),说明陆域化的秋茄林已处于光抑制状态; 但补水后Fv/Fm显著提高(P<0.01), 接近0.8, 说明植物健康状态得到显著改善; 4) 补水提高秋茄叶片PS Ⅱ反应中心的光化学效率, 显著改善双光系统间激发能分配的失衡状态, 有效降低天线色素热耗散, 光能分配趋于高效, 提高了叶片光能的光化学利用效率。研究结果表明, 周期性补水是陆域化的退化红树林生境改善的有效修复方法。  相似文献   

11.
Bibby TS  Mary I  Nield J  Partensky F  Barber J 《Nature》2003,424(6952):1051-1054
Prochlorococcus, the most abundant genus of photosynthetic organisms, owes its remarkably large depth distribution in the oceans to the occurrence of distinct genotypes adapted to either low- or high-light niches. The pcb genes, encoding the major chlorophyll-binding, light-harvesting antenna proteins in this genus, are present in multiple copies in low-light strains but as a single copy in high-light strains. The basis of this differentiation, however, has remained obscure. Here we show that the moderate low-light-adapted strain Prochlorococcus sp. MIT 9313 has one iron-stress-induced pcb gene encoding an antenna protein serving photosystem I (PSI)--comparable to isiA genes from cyanobacteria--and a constitutively expressed pcb gene encoding a photosystem II (PSII) antenna protein. By comparison, the very low-light-adapted strain SS120 has seven pcb genes encoding constitutive PSI and PSII antennae, plus one PSI iron-regulated pcb gene, whereas the high-light-adapted strain MED4 has only a constitutive PSII antenna. Thus, it seems that the adaptation of Prochlorococcus to low light environments has triggered a multiplication and specialization of Pcb proteins comparable to that found for Cab proteins in plants and green algae.  相似文献   

12.
Ben-Shem A  Frolow F  Nelson N 《Nature》2003,426(6967):630-635
Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4 A resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.  相似文献   

13.
The mechanisms of oxygen evolution and carbon fixation in oxygenic organisms depend on the equal distribution of excitation energy to photosystems Ⅰ and Ⅱ, which is regulated by a mechanism referred to as light-state transition. In this work, a novel mechanism, energy spillover from PS Ⅰ to PS Ⅱ referred to as "inverse spillover", was revealed besides "mobile phycobilisome (PBS)" and the "spillover" of energy from PS Ⅱ to PS Ⅰ in cyanobacteria. Under continuous illumination with blue light, time-dependent 77-K fluorescence spectra demonstrated heterogeneous kinetics for the PBS and photosystem components, indicating that inverse spillover and mobile PBS work successively to regulate the excitation to a balanced distribution in cyanobacterial cells under blue light. Inverse spillover and mobile PBS occur under both 100 and 300 μmol m-2 s-1 blue-light conditions but they are accelerated under the latter.  相似文献   

14.
弱光条件下(120μmol·m-2·s-1)用Tris(0.8mol/L,pH6.5~10.0)处理具有放氧活性的PSⅡ核心复合物,可引起33kD锰稳定蛋白的释放和锰复合物的破坏,并导致核心复合物的结构发生明显的改变.温和电泳、SDS-PAGE和双向电泳分析表明,主要是PSⅡ核心复合物的二聚体和单体减少,并且复合物部分解体;除反应中心D1和D2蛋白外,核心天线CP43和CP7的量也减少,33kD锰稳定蛋白要发生降解.避光时,PSⅡ核心复合物不受影响.  相似文献   

15.
Zouni A  Witt HT  Kern J  Fromme P  Krauss N  Saenger W  Orth P 《Nature》2001,409(6821):739-743
Oxygenic photosynthesis is the principal energy converter on earth. It is driven by photosystems I and II, two large protein-cofactor complexes located in the thylakoid membrane and acting in series. In photosystem II, water is oxidized; this event provides the overall process with the necessary electrons and protons, and the atmosphere with oxygen. To date, structural information on the architecture of the complex has been provided by electron microscopy of intact, active photosystem II at 15-30 A resolution, and by electron crystallography on two-dimensional crystals of D1-D2-CP47 photosystem II fragments without water oxidizing activity at 8 A resolution. Here we describe the X-ray structure of photosystem II on the basis of crystals fully active in water oxidation. The structure shows how protein subunits and cofactors are spatially organized. The larger subunits are assigned and the locations and orientations of the cofactors are defined. We also provide new information on the position, size and shape of the manganese cluster, which catalyzes water oxidation.  相似文献   

16.
Comparative investigation on energy distribution between two photosystems were carried out in the sporo- phytes and gametophytes of Porphyra yezoensis. By perfor- ming 77 K fluorescence spectra, we suggested that there probably existed a pathway for energy transfer from PSⅡ to PSⅠ to redistribute the absorbed energy in gametophytes, while no such a way or at minor level in sporophytes. Electron transfer inhibitor DCMU blocked the energy transfer from PSⅡ to PSⅠ in gametophytes, but no obvious effects on sporophytes. These indicated that excitation energy distribution between two photosystems in gametophytes was more cooperative than that in sporophytes. These data in ontogenesis reflected the evolution process of photosynthetic organisms and supported the hypothesis of independent evolution of each photosystem.  相似文献   

17.
Phosphatidylcholine (PC) accounts for less than 1% of the total lipids in plant photosystem II (PSII) particles.In this experiment, PSII particles were reconstituted with PC to construct PSII-PC vesicles.The effect of PC on the steady state fluorescence of chlorophyll (Chl) in PSII particles was studied.The results show that PC significantly affected the fluorescence intensity, but did not obviously affect the fluorescence emission band peak position.PC also did not obviously affect the absorbance at 436 nm or the amide I band peak position in FT-IR spectroscopy of PSII particles.The results suggest that PC may affect the light energy transfer from the antenna chlorophyll molecules to the reaction center chlorophyll molecule (P680).  相似文献   

18.
IntroductionThephotosynthesislightreactionin plantsoccursinthethylakoidmembraneofthechloroplasts .Theproteincomplexesinthethylakoidmembranesaresupermolecularsystemsconsistingof proteins ,lipidsand pigmentswhichregulateandcontrolthelightenergyabsorption ,…  相似文献   

19.
Cyclic electron flow around photosystem I is essential for photosynthesis   总被引:4,自引:0,他引:4  
Photosynthesis provides at least two routes through which light energy can be used to generate a proton gradient across the thylakoid membrane of chloroplasts, which is subsequently used to synthesize ATP. In the first route, electrons released from water in photosystem II (PSII) are eventually transferred to NADP+ by way of photosystem I (PSI). This linear electron flow is driven by two photochemical reactions that function in series. The cytochrome b6f complex mediates electron transport between the two photosystems and generates the proton gradient (DeltapH). In the second route, driven solely by PSI, electrons can be recycled from either reduced ferredoxin or NADPH to plastoquinone, and subsequently to the cytochrome b6f complex. Such cyclic flow generates DeltapH and thus ATP without the accumulation of reduced species. Whereas linear flow from water to NADP+ is commonly used to explain the function of the light-dependent reactions of photosynthesis, the role of cyclic flow is less clear. In higher plants cyclic flow consists of two partially redundant pathways. Here we have constructed mutants in Arabidopsis thaliana in which both PSI cyclic pathways are impaired, and present evidence that cyclic flow is essential for efficient photosynthesis.  相似文献   

20.
An Energy-Harvesting Wireless Sensor Network(EH-WSN) depends on harvesting energy from the environment to prolong network lifetime. Subjected to limited energy in complex environments, an EH-WSN encounters difficulty when applied to real environments as the network efficiency is reduced. Existing EH-WSN studies are usually conducted in assumed conditions in which nodes are synchronized and the energy profile is knowable or calculable. In real environments, nodes may lose their synchronization due to lack of energy.Furthermore, energy harvesting is significantly affected by multiple factors, whereas the ideal hypothesis is difficult to achieve in reality. In this paper, we introduce a general Intermittent Energy-Aware(IEA) EH-WSN platform.For the first time, we adopted a double-stage capacitor structure to ensure node synchronization in situations without energy harvesting, and we used an integrator to achieve ultra-low power measurement. With regard to hardware and software, we provided an optimized energy management mechanism for intermittent functioning.This paper describes the overall design of the IEA platform, and elaborates the energy management mechanism from the aspects of energy management, energy measurement, and energy prediction. In addition, we achieved node synchronization in different time and energy environments, measured the energy in reality, and proposed the light weight energy calculation method based on measured solar energy. In real environments, experiments are performed to verify the high performance of IEA in terms of validity and reliability. The IEA platform is shown to have ultra-low power consumption and high accuracy for energy measurement and prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号