首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
以亚微米级TiC和CrxCy合金混合粉末为原料,采用激光合金化技术在球铁表面制备出耐磨、耐腐蚀、耐高温的合金化层.利用XRD,SEM,EDS等分析了激光合金化层的相组成及微观组织,并测试了激光合金化层的显微硬度.结果表明,合金化层表面平整,与基体形成了冶金结合.在激光功率、光斑直径一定的条件下,在400~1000 mm/min扫描速度范围内,合金化层厚度随扫描速度增加而减小,合金化层硬度随扫描速度增加而提高.激光合金化层中存在细晶强化和固溶强化等强化作用,大幅度地提高了球铁表面的显微硬度.  相似文献   

2.
铸造铝合金表面激光熔凝合金化改性   总被引:2,自引:0,他引:2  
将NiCrSiNbB合金粉末用聚合物调和成糊状并涂于Al319铸造铝合金试样表面,用CO2激光以不同功率、不同的光斑移动速度处理涂层,使其快速熔凝形成耐磨的合金化层·实验结果表明,工艺参数严重地影响熔凝后合金化层的性能;可得到显微硬度达1400HV的高硬度层;选用合适的功率、光斑运动速度及预涂层厚度可得到单个处理轨迹、多道搭接处理及整个试样表面处理的无明显气孔、裂纹缺陷的组织细密的合金化层;层内主要强化相为AlNi和不同比例的Al,Ni金属间化合物·最终得到的表面合金化层的硬度比基体高60HV~100HV,其耐磨性与基材相比提高3~5倍  相似文献   

3.
通过改变激光功率和扫描速度等参数,研究其对45钢激光表面强化组织与性能的影响。实验结果表明,单道扫描时,当保持扫描速度v为15mm/s时,增加激光功率P,可增加硬化层的深度,最大深度可达1.5mm以上。另外,P/v比值越大,硬化层深度越大;而当P/v比值保持不变时,硬化层深度随着激光功率的增加而增加,其中激光功率从1.2kW到1.8kW时,硬化层深度值增加较快;当激光功率大于1.8kW后,深度值的增长随功率增加变缓;而且硬化层的硬度都达到700HV以上,远高于基体的硬度。在激光多道搭接扫描时,激光能量的再次输入会导致靠近搭接区的前一道硬化层产生回火软化,其硬度接近基体的硬度。  相似文献   

4.
采用Nd∶YAG脉冲激光器对预置了高速钢粉末的球墨铸铁基体进行激光熔覆处理.单道实验得到优化后的高速钢激光熔覆工艺参数为:电流240A、扫描速度3.0 mm/s、离焦量13 mm、预置涂层厚度0.5mm、激光脉冲频率15Hz、脉宽3.0ms.多道搭接实验结果表明,制备的熔覆层组织致密,与基体形成了冶金结合,主要强化相为WC1-x和V4C3,有裂纹存在.熔覆层平均显微硬度为600HV,最高达到682HV,约为基体(300HV)的2.3倍.添加50%Ni60自熔性合金,有效控制了熔覆层裂纹数量,显微硬度略有降低,最高为637HV,约为基体的2.1倍.  相似文献   

5.
利用4 k W光纤激光器对一种780 MPa级Nb-Ti-Mo微合金化的低碳钢进行了激光相变强化处理,研究了激光功率和扫描速度对激光相变区宏观形貌和显微硬度的影响,讨论了激光相变区显微组织的演变规律.结果表明:随着激光功率的增加或扫描速度的降低,激光相变区宽度和深度逐渐增加.激光相变区包含三个区域:微熔区、硬化区和过渡区.微熔区显微组织为铁素体、粒状贝氏体和马氏体;硬化区显微组织为全马氏体;过渡区为相对细小的全马氏体或与铁素体的混合组织.在所研究的参数中,硬化区的硬度可超过母材30%左右,平均硬度达到320 HV.实验钢表面耐磨性能提高30%左右.  相似文献   

6.
采用2 kW CO2激光器对20Cr2M4W钢进行了激光表面钴合金化的实验研究.利用扫描电镜、电子探针、X射线衍射、透射电镜、显微硬度计等手段分析了合金化区域的成分、组织和性能.结果表明:当激光功率为1.4 kW,扫描速度为100~250 mm/min时,激光表面钴合金化可获得含钴均匀的合金化层,合金化层热疲劳性能比基体材料提高1倍以上,生成的氧化膜不易脱落;合金化层的室温硬度提高HV50以上;在700℃时,Co含量为8.08%合金化层的高温硬度提高HV36.因此,激光表面钴合金化在热作工具钢的表面性能优化领域有着可喜的应用前景.  相似文献   

7.
通过选择基体预热温度、激光功率、扫描速度、光斑直径为影响因素,用正交试验方法在40Cr基体上进行熔覆Cr18Ni8Mo2Si研究;通过测试残余应力、显微硬度和观察金相组织等研究熔覆基体温度对熔覆层质量的影响,经研究随着预热温度的上升,残余应力减小,最小的残余应力参数组合为预热温度400℃、激光功率1 200 W、扫描速度4 mm·s-1、光斑直径3 mm;随着预热温度的提高,从显微组织看,组织缺陷减少,结合效果变好;熔覆层显微硬度也随着预热温度的提高而明显增大.  相似文献   

8.
为提高TC4钛合金表面耐磨性和耐腐蚀性,利用激光熔覆技术在TC4钛合金表面激光熔覆制备CoCrW涂层,并对其工艺及耐磨性和耐蚀性进行研究。结果表明:CoCrW熔覆层和TC4基体有着良好的冶金结合,熔覆涂层显微组织均匀致密,主要由树枝晶组成。在激光工艺参数中,扫描速度、离焦量、光斑直径和搭接率一致情况下,当激光功率为3000 W时,所得熔覆层硬度最大为1160 HV,为TC4基材硬度324 HV的近4倍,且在该功率下,CoCrW熔覆层平均摩擦系数最低为0.2363,磨损量最小,表现出较好的耐磨特性,磨损机制为磨粒磨损和轻微的黏着磨损;而TC4基材的平均摩擦系数为0.3598,磨损机制为黏着磨损和疲劳剥落磨损,此时,熔覆层的电化学腐蚀电位较高,腐蚀速率较低,表现出良好的耐蚀性。  相似文献   

9.
在低硅钢表面激光熔覆Fe-Si粉末制备高硅熔覆层,研究了激光扫描速度对熔覆层宏观形貌、相组成、显微组织、成分及硬度分布等的影响.结果表明,不同扫描速度条件下熔覆层表面均由-αFe(Si),-γFe(Si)和FeSi2组成;随扫描速度增大,熔覆层的组织有细化的趋势,组织不均匀性得到改善;同时,熔覆层厚度减小,导致稀释率减小,使熔覆层平均硅含量提高,显微硬度提高.通过调整激光扫描速度,获得了无裂纹缺陷,且与基体呈良好冶金结合的熔覆层,最佳扫描速度为2.5 mm/s.  相似文献   

10.
为探讨钢的激光淬火工艺参数对淬硬层深的影响 ,本文对T10钢进行了激光淬火试验。结果表明 :淬硬层深随激光功率的增大、扫描速度的降低、激光束重叠尺寸的增大而增大 ,其中扫描速度对淬硬层深的影响相对较大 ;在功率 (0 .9~ 1)kW ,扫描速度 2 0~ 30mm s ,光斑直径 3mm ,激光束重叠 1.0~ 1.5mm的工艺参数范围内 ,可获得不小于 0 .5mm的淬硬层深 ,表面硬度达HV10 95左右 ;此外还发现 ,激光淬火前用碳黑进行黑化处理 ,有可能在T10钢表层形成亚共晶组织。  相似文献   

11.
结晶器铜板上激光熔覆镍基合金   总被引:1,自引:3,他引:1  
利用5kWCO2激光器在结晶器铜板上熔覆镍基合金,并研究了熔覆层组织性能.选用与结晶器铜板成分相近的镍基自熔合金粉末Nickel-baseHMSP1015-00(Ni1015),利用等离子喷涂技术在铜板上预涂Ni1015合金,然后再采用高能量密度激光进行重熔.借助OM,SEM和显微硬度计分析测定了涂层的显微组织形貌、组织成分和截面显微硬度分布情况.所得到的熔覆层表面平整均匀,与基体为冶金结合;熔覆层平均显微硬度为270HV0.05,是基体的3.2倍(85HV0.05).确定出本实验合适的激光熔覆工艺参数功率密度为1.58×102kW/cm2时,扫描速度为3~4m/min.  相似文献   

12.
利用500 W脉冲YAG激光作为辐射源,纯氮气作为氮化元素,粒度为20μm的钛粉和石墨粉为预涂粉末,采用激光熔覆原位自生的方法,在Ti-6Al-4V表面制备出优良的Ti(C,N)陶瓷涂层.通过热力学分析,并结合XRD分析方法,研究了原位自生Ti(C,N)的反应机理以及工艺参数(包括脉冲频率、脉冲宽度、扫描速度等)对原位自生Ti(C,N)陶瓷涂层的影响.热力学分析结果表明,在激光辐射条件下,可原位生成以Ti(C,N)为主的陶瓷涂层.XRD分析表明,合适的工艺组合为:氮气压强为0.4 MPa,离焦量为15 mm,扫描速度在2.0~4.0 mm/s之间,脉冲频率为15 Hz,脉宽在3.0 ms左右....  相似文献   

13.
采用大功率连续CO2激光器对预置了高速钢粉末的球墨铸铁基体进行激光辅助金属沉积处理.得到了激光沉积的优化工艺参数,用该参数制备的沉积层组织致密、无气孔、无裂纹等缺陷,沉积层与基体为冶金结合.XRD分析表明,Ni60+T15+T15沉积层中V4C3,WC1-x,CoCx等硬质相起到弥散强化的作用,Ni60+T15+T15沉积层平均硬度值为716HV,是基体的2.2倍.Ni60+YT12+YT12沉积层中起强化作用的Cr7C3相主要分布在晶界间,Ni60+YT12+YT12沉积层平均硬度值为739HV,约为基体的2.3倍.  相似文献   

14.
激光熔覆-激光气体氮化方法制取TiCN-TiN复合熔覆层   总被引:5,自引:0,他引:5  
采用500W YAG脉冲激光作为辐射源,TiCN粉末为熔覆材料,高纯N2气作为氮化元素和保护气体,利用激光熔覆-激光气体氮化(LC-LGN)方法,在钛合金(Ti-6Al-4V)表面制备了以TiCN和TiN为主的复合熔覆层.研究了激光工艺参数对TiCN-TiN复合熔覆层成分的影响.对熔覆样品进行了XRD物相分析和显微硬度测试.结果表明:在激光功率和脉冲宽度一定的条件下,脉冲频率、扫描速度是影响TiCN-TiN复合层形成的主要因素.合适的工艺参数组合为:脉冲频率为15 Hz,脉宽为3.0 ms,扫描速度为2.0 mm/s.扫描速度小于2.0 mm/s时,熔覆过程中氧化现象严重,而高于2.0 mm/...  相似文献   

15.
针对复合陶瓷材料Al2O3/SiO2/ZrO2脆性大难加工等问题,结合选择性激光烧结(SLS)工艺成形复合陶瓷粉末,采用Nd:YAG激光器及其送粉装置进行激光烧结试验.利用扫描电镜(SEM)、能量色散X射线光谱仪(EDX)和X射线衍射分析仪(XRD)观察了成形件的微观组织并分析了微观组织成分.探讨了激光烧结的主要工艺参数对单层烧结质量的影响及扫描速度对显微结构的影响.结果表明:采用正交试验方法系统地分析了工艺过程,获得最佳工艺参数为扫描速度15mm/s、激光功率40W、搭接量04mm,得到了气孔较少、密度372g/cm3的烧结表面,能够烧结出致密并具有枝状组织的陶瓷.  相似文献   

16.
在CO2激光散光斑直径20mm的情况下,分别选择在不同功率静置的条件下辐照Fe78Si9B13非晶带实现部分晶化·用穆斯堡尔谱、X射线衍射和扫描电镜对原始非晶样品(Fe78Si9B13)和晶化后样品的微观结构进行了分析·结果表明:在CO2激光散光斑直径一定的条件下(20mm),分别选择激光功率250W和300W辐照非晶Fe78Si9B13样品20s,非晶样品可以实现约6%和9%的晶化·激光辐照非晶Fe78Si9B13合金的晶化相为αFe(Si),样品发生了织构现象,晶粒沿(200)面大量析出·激光晶化相产生在非晶带表面晶化层中·在其他条件一定的情况下,样品的晶化量随着激光功率的增加而增加·  相似文献   

17.
采用高功率光纤激光器在氮气气氛中对TC4钛合金表面进行氮化,制备出渗氮层,并研究了光纤激光功率对TC4钛合金氮化层表面形貌、组织结构以及显微硬度的影响.结果表明:氮化层表面呈现粗糙和光滑两种形貌,氮化层组织为枝晶状组织,热影响区组织为针状组织,当扫描速度为10 mm/s、氮气流量10 L/min、喷嘴距离为3 mm、离焦量为0 mm时,渗氮层的熔深、熔宽均随着激光功率增大而呈现出增大趋势.此外,在距离氮化层表面相同深度的显微硬度随着激光功率增大也呈现出增大趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号