首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
氧化铁/活性炭复合吸附材料去除水中砷的研究   总被引:4,自引:0,他引:4  
以实验室制备的氧化铁、经硝酸和草酸铁改性的活性炭12×40(AC 1)为原料,分别制成两种氧化铁/活性炭复合吸附材料(FeO/AC-H和AC/Fe2(C2O4)).通过X射线衍射仪、氮气吸附仪、扫描电子显微镜和X射线光谱仪进行吸附的表观特性和物化性能分析,结果表明,活性炭的表面物质有磁铁矿(Fe3O4)、磁赤铁矿(γ-Fe2O3)、赤铁矿(α-Fe2O3)和针铁矿(α-FeO(OH)),而且这些物质的存在对活性炭的比表面积影响不大.采用静态吸附实验方法,用AC 1,FeO/AC-H和AC/Fe2(C2O4)三种吸附剂吸附去除水中砷,获得了吸附等温平衡数据,用Langmuir模型和Fre-undlich模型进行回归分析.结果表明,FeO/AC-H和AC 1对As(Ⅴ)的吸附更符合Langmuir吸附模型,而复合吸附剂AC/Fe2(C2O4)对As(Ⅴ)的吸附比较符合Freundlich吸附模型.  相似文献   

2.
活性炭负载纳米零价铁去除溴酸盐的研究   总被引:1,自引:0,他引:1  
实验采用液相还原法制备活性炭负载纳米零价铁材料(nZVI/AC),并利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对其结构进行表征.考察了不同反应条件下nZVI/AC对BrO3-的去除效率,并研究其去除机理.结果表明nZVI/AC具有很高的表面反应活性,且nZVI和活性炭(AC)之间存在协同作用. BrO3-的去除效率随 pH 值的减小而增大, 共存离子NO3-和SO42-对其去除率影响不大但降低了去除速率.机理分析表明BrO3-被nZVI/AC吸附而使局部BrO3-浓度升高,并被nZVI迅速还原为无毒的Br-.  相似文献   

3.
采用活性炭作为多孔基体,利用化学氧化法在活性炭孔道内原位聚合沉积合成聚苯胺,制得用于高效去除水体Cr(Ⅵ)的聚苯胺/活性炭复合材料。利用N2吸附/脱附、红外光谱、X射线衍射、拉曼光谱等手段对材料结构和表面性质进行表征。结果表明,随着聚苯胺含量增加,所得复合材料活性炭孔道堵塞愈加显著,但表面氨基官能团数量增多,对水体中Cr(Ⅵ)的去除性能相应加强。温度为25℃,pH=1,复合材料加量为0.100 g条件下,最佳复合材料对100 mg/L K2Cr2O7溶液中Cr(Ⅵ)的去除率可达99.26%,循环使用6次后,去除率依然为92.32%。吸附模型研究表明,聚苯胺/活性炭复合材料吸附Cr(Ⅵ)过程符合Langmuir等温吸附模型和准二级动力学模型。  相似文献   

4.
采用深圳笔架山水厂实际原水和模拟原水,研究了活性炭(AC)在不同条件下对原水中六价铬的去除效果.研究结果表明:活性炭对六价铬的吸附效果主要受到pH的影响,平衡研究发现AC吸附效果最好的pH值为2,投加量在4g·L-1,吸附时间在90 min时,六价铬的去除率达到95.73%;随着吸附剂投加量的增加和吸附时间的延长,六价铬去除率会逐渐升高然后趋于稳定;六价铬的去除率会随着六价铬初始浓度的升高而降低.AC对六价铬的吸附去除能力很强,无论是原水还是纯水对六价铬去除率都达到了99%以上,原水中的其他吸附剂对吸附的影响很小,活性炭可以作为去除水中六价铬的有效吸附剂.  相似文献   

5.
通过超声浸渍法对活性炭进行负载Fe(NO_3)_3改性,采用扫描电镜(SEM)、比表面积分析(BET)、质量滴定、红外光谱分析(FT-IR)和Boehm滴定等多种分析方法对未改性活性炭(AC)和改性活性炭(AC-Fe)进行表征,探讨了在不同条件下改性前后活性炭对污水中氨氮的吸附能力和动力学特性.结果表明,经超声浸渍铁元素改性后,活性炭大孔和中孔的孔容积以及比表面积减小,平均孔径略有增大,表面含氧官能团种类基本没有变化. AC-Fe的内酯基、酚羟基及碱基分别增加了12.8%、13. 3%、4. 4%,羧基减少了28. 6%,其等电点由5. 8增大到8. 2.当氨氮质量浓度为10 mg/L,活性炭投加量20g/L,温度5℃时,AC-Fe对氨氮的吸附量为0. 138 mg/g,较AC对氨氮的吸附量提高了29. 0%. Langmuir方程和Freundlich方程均能较好地描述改性前后活性炭对氨氮的等温吸附过程,吸附动力学数据符合准二级动力学方程.  相似文献   

6.
胺接枝活性炭的制备及其对CO_2的吸附性能   总被引:2,自引:0,他引:2  
将胺基改性应用到沥青基球形活性炭上制备改性活性炭。分别考察了改性温度、接枝胺基种类和前处理条件对制得的改性活性炭吸附CO2能力的影响,结果表明400℃下,乙二胺氧化接枝的沥青基球形活性炭吸附CO2能力最强,吸附量可达12.35mg/g。  相似文献   

7.
采用液相氧化法制备了MnO2超级电容器电极材料,以MnO2为正极材料,活性炭(AC)为负极材料,丙烯腈作聚合物单体,碳酸二甲酯(DMC)与碳酸乙烯酯(EC)的混和液作增塑剂,高氯酸锂为支持电解质,采用内聚合法制备PAN基凝胶聚合物电解质MnO2/AC混合电容器.通过循环伏安、交流阻抗、恒流充放电等测试方法对混合电容器的电化学性能进行了测试.结果表明:混合电容器的工作电压为2.5 V,比容量为27.3 F/g(i=0.5 mA/cm2),比同电解质体系的AC/AC电容器提高约48.21%.  相似文献   

8.
活性炭吸附硝酸铜电解液体系中砷的研究   总被引:1,自引:0,他引:1  
研究了活性炭对硝酸铜电解液体系中砷的吸附性能,探讨了活性炭用量、吸附温度、吸附时问、溶液pH对其吸附性能的影响.实验结果表明:活性炭对砷有较强的吸附能力.在常温下,砷初始浓度为1g/L,电解液与活性炭质量比为13∶1,pH=2.5,平衡时间为40min时,砷的去除率达到85.2%.  相似文献   

9.
采用一步水热法合成了铁掺杂的钛酸纳米管(Fe-TNTs),并用于同步吸附和光催化以去除水体中的砷.TEM,EDS和XRD等表征证实了铁成功掺杂到钛酸纳米管(TNTs)中,同时表明该材料具有较大的比表面积(162.8m2/g)和较高的等电点(5.49),利于其对砷的吸附.Fe-TNTs对As(Ⅲ)和As(Ⅴ)的吸附等温线符合Two-site Langmuir模型,理论最大吸附量分别为17.67和90.96mg/g.高As(Ⅴ)的吸附性能得益于低p H值下的静电吸引作用,而对As(Ⅲ)的吸附机理为配位作用.铁的掺杂不但减小了TNTs的能带宽度,而且Fe3+可以充当临时的电子-空穴对捕获剂,以阻止TNTs电子-空穴对的复合,由此提高了TNTs的光催化性能.光催化30min,As(Ⅲ)即可完全被氧化成As(Ⅴ),As(Ⅴ)继而可通过Fe-TNTs的吸附被去除,因此Fe-TNTs对砷的去除过程是一个同步光催化和吸附的过程.  相似文献   

10.
活性炭材料的孔径结构对SO_2吸附性能的影响   总被引:1,自引:0,他引:1  
为了研究在常温下活性炭材料孔径结构及材料形态对SO2吸附性能的影响,以5种不同孔径结构的沥青基活性炭纤维及活性炭颗粒为材料,通过吸附动力学模型的拟合,考查了活性炭孔径结构及材料形态与SO2吸附速率的关系.结果表明:较小的微孔径结构更有利于SO2的吸附;不同孔径结构的活性炭材料对SO2的吸附均符合Bangham动力学过程,活性炭纤维的吸附速率随孔径的增大而增大;活性炭颗粒因其形态结构的差异,吸附速度较活性炭纤维慢,吸附效果相对较差.  相似文献   

11.
采用低热固相反应法制备出纳米MnO2活性材料.循环伏安测试结果表明,在6 mol.L-1KOH电解液中,MnO2电极在-0.3~0.6 V(vs.Hg/HgO)的电压范围内表现出较好的超电容特性.恒流充放电结果表明,以MnO2为正极、活性炭(AC)为负极组成的碱性MnO2/AC混合电容器在比电流为100 mA.g-1、充放电电压范围为0~1.5 V条件下的放电比电容可达66.2 F.g-1.同样条件下,MnO2与活性炭质量比为80∶20的复合正极与活性炭负极组成的(MnO2 AC)/AC混合电容器的比电容可达78.2 F.g-1.  相似文献   

12.
通过硫酸活化膨润土和粉煤灰,并按一定比例制备了一种对具有土霉味的2-甲基异莰醇(2-methylisoborneol,MIB)和二甲基萘烷醇(geosmin)有吸附清除效果的吸附剂,该吸附剂剂量为15mg/L,pH 8.0时,对MIB和geosmin的吸附率分别为59.9%和63.7%.MIB和geosmin无论是在单组份溶液体系还是双组份溶液体系都符合Freundlich等温吸附模型,表明该吸附过程不是单分子层吸附,而是一个非均相吸附体系.将其与高锰酸钾复合药剂(PPC)、粉末活性炭(PAC)分别去除水体土霉异味的效果进行了比较,结果显示,粉末活性炭的去除效率最高,合成吸附剂次之,高锰酸钾复合药剂去除效率最差.该吸附剂在去除水体土霉异味比单纯使用活性炭相比,其吸附综合效益具有一定优势,可以替代或者部分替代活性炭或者商品吸附剂.  相似文献   

13.
考察了不同平衡浓度和吸附温度下丙烯酸甲酯在3种活性炭(AC、Y2、C5)上的吸附情况及水蒸气存在对吸附的影响.研究表明,丙烯酸甲酯在这些活性炭上的吸附平衡数据均可较好地用Langmuir-Freundlich方程描述;在313K和丙烯酸甲酯平衡体积分数为149×10-6~3412×10-6时,活性炭AC均有最大的平衡吸附量.而当丙烯酸甲酯的体积分数低于149×10-6时,活性炭Y2在该温度下有最大的平衡吸附量.该结果与AC有丰富的微孔和中孔,Y2有较小的平均孔径密切相关.在该温度下,吸附质穿透定量活性炭床层所需时间的对数与其入口浓度的对数呈较好的线性关系.在相对湿度低于40%时,丙烯酸甲酯在活性炭上的饱和吸附量不小于干燥条件下的93%.活性炭吸附剂的再生和吸附于活性炭上丙烯酸甲酯的回收在453K下即可较好实现.活性炭AC对丙烯酸甲酯的吸附性能经过6次吸附(313K)/脱附(573K)循环使用未发现变化.  相似文献   

14.
基于铁基材料对砷的独特的亲合力及介孔材料的高比表面积,用水热法合成铁基介孔微球(Fe-MS),在对其进行系列表征后,考察了其吸附除砷效果。X射线衍射(XRD)和扫描电镜(SEM)表征结果均显示Fe-MS是非晶微球。N2吸附脱附分析结果表明,Fe-MS具有较大的比表面积(407 m2/g)且呈规整双孔径分布(3.7 nm与5.3 nm)。吸附As(V)研究结果显示,在pH=3~4,初始As(V)=100 ppb时,其去除率达99%以上;吸附等温线符合Langmuir方程;吸附动力学符合准二级动力学方程;Fe-MS对As(V)的吸附效率不受背景离子强度的影响,表明其吸附机理为稳定的球内络合作用。  相似文献   

15.
以工业4号活性炭(AC4)为载体,采用浸渍法制备Cu-磺化酞菁钴(CoSPc)负载型活性炭,考察不同制备条件对其催化氧化净化PH3性能的影响,并采用N2物理吸附(N2-BET)、扫描电镜(SEM)、能量色散谱仪(EDS)、X线光电子能谱(XPS)等手段对改性活性炭进行表征.研究结果表明:当Cu2+浓度为0.1 mol/L,干燥温度为110℃,焙烧温度为350℃时改性炭对PH3的催化氧化净化效果最好;与以往研究的Cu2+改性活性炭相比,Cu-CoSPc负载型活性炭对PH3具有更好的净化脱除性能.  相似文献   

16.
以煤基活性炭为原材料,采用浸渍-水热法合成TiO_2/AC复合材料,进一步分析TiO_2负载量对TiO_2/AC复合材料吸附性能和光催化活性的影响.结果表明:TiO_2负载量为10.2%时,TiO_2/AC复合材料对Rh B的单层饱和吸附量为19.5mg/g,高于煤基活性炭饱和吸附量13.8mg/g.紫外光辐照下,不同负载量的TiO_2/AC复合材料均表现出优异的光催化活性.TiO_2负载量为11.4%时,紫外光辐照2h后,TiO_2/AC复合材料对Rh B降解率为98.5%,远高于同等条件下P25光催化剂对Rh B的降解率(72.1%).这是由于活性炭和TiO_2之间的界面可以有效分离光生电子-空穴对,同时石墨化C的存在可以提高光生电子的迁移率,因此TiO_2/AC复合材料表现出明显优于P25的光催化活性.  相似文献   

17.
以木棉纤维为原料,采用NaOH、ZnCl2化学活化法在450℃处理后制备得到木棉基活性炭纤维样品。利用扫描电镜、X射线衍射分析、拉曼光谱及低温氮气吸脱附对木棉基活性炭纤维的结构进行了表征和测定,结果表明:所制备的木棉基活性炭纤维由无定形碳组成,具有丰富的微孔结构,比表面积达到1397 m2/g。将通过上述方法获得的木棉基活性炭纤维在30 ℃条件下对低沸点二氯甲烷及常见挥发性有机物(VOCs)中苯、甲苯进行吸附性能评价,由吸附穿透曲线计算获得这3种VOCs的吸附量分别为130 mg/g、350 mg/g、479 mg/g。进一步考察了木棉基活性炭纤维的再生性能及在不同温度下对二氯甲烷吸附穿透曲线的影响,发现随着吸附温度升高,穿透时间提前,吸附容量随之下降;在温度为20 ℃时,木棉基活性炭纤维对二氯甲烷的吸附量可达179 mg/g。  相似文献   

18.
以水葫芦为原料,采用多聚磷酸活化法制备水葫芦活性炭.利用扫描电子显微镜(SEM)、比表面积测定仪(BET)和傅里叶红外光谱(FTIR)对活性炭进行表征,并将其用于吸附Pb(Ⅱ).结果表明:水葫芦活性炭其内部和表面存在着大量形态各异的孔隙,比表面积为1005.5m~2/g,平均直径为2.02nm;表面有羟基、磷酸基、羧基等基团,有利于对重金属离子的去除.水葫芦活性炭对Pb(Ⅱ)的吸附动力学和吸附等温线分别符合Elovich和Langmuir等温吸附方程,吸附过程属于单分子层吸附,饱和吸附量为133.33mg/g.  相似文献   

19.
以工业煤质活性炭(AC)为载体,采用浸渍法制备铜金属氧化物负载型活性炭,考察不同制备条件和反应条件对CS2的吸附净化性能的影响,并采用N2物理吸附(N2-BET)、扫描电镜及能量色散谱仪(SEM/EDS)、X线衍射仪(XRD)、X线光电子能谱仪(XPS)等手段对改性活性炭(MAC)进行表征分析。研究表明:在Cu2+浓度为0.15 mol/L,焙烧温度为400℃条件下,制备的改性活性炭具有最佳的孔结构性质和比表面积,活性组分CuO负载均匀,并具有催化氧化作用。反应温度条件为20℃,氧含量为2.0%时,改性炭对CS2吸附净化效果最好,并且在吸附容量方面铜改性活性炭比空白活性炭提升了2.6倍。  相似文献   

20.
苯酚在改性活性炭上的脱附活化能   总被引:3,自引:0,他引:3  
探讨了金属离子改性活性炭对苯酚脱附活化能的影响.通过浸渍法分别将6种金属离子负载在活性炭表面,应用程序升温脱附技术测定了苯酚在系列改性活性炭上的脱附活化能,应用软硬酸碱理论分析和讨论了活性炭表面负载不同金属离子对苯酚脱附活化能的影响.结果表明,苯酚在A l(Ⅲ)/AC、Mg(Ⅱ)/AC、Fe(Ⅲ)/AC、Ca(Ⅱ)/AC上的脱附活化能高于其在原始活性炭上的脱附活化能,而它在Ag(Ⅰ)/AC、Cu(Ⅱ)/AC上的脱附活化能低于其在原始活性炭上的脱附活化能.根据软硬酸碱理论分类,苯酚属硬碱.在活性炭表面分别负载硬酸类金属离子Al3 、Mg2 、Fe3 和Ca2 ,会增大活性炭表面的局部硬酸度,提高对苯酚的吸附能力;Ag 属软酸,负载Ag 离子降低了活性炭表面的局部硬酸度,从而降低了其对苯酚的吸附能力;Cu2 离子属交界酸,负载Cu2 离子降低了活性炭表面的交界酸度,也在一定程度上减少了表面对苯酚的吸附能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号