首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
根据木材阻燃机理,以磷-氮体系阻燃剂为主进行复配,获得3组配方(质量比):三聚氰胺∶磷酸∶硼酸=2∶2∶3;聚磷酸铵∶双氰胺=2∶1;尿素∶双氰胺∶磷酸=1∶3∶4.每组配方分别配制浓度为5%,10%,15%的阻燃液,采用浸渍法在恒温80℃下,浸渍24 h 处理白杨木材试样.利用锥形量热仪在热辐射功率为50 kW/m2的条件下,对阻燃处理后的木材试样以及空白试样进行燃烧特性分析.实验结果表明,三聚氰胺、磷酸、硼酸组成的配方在增强木材试样的耐火性、抑制试样产烟量和一氧化碳生成率方面效果显著;聚磷酸铵 APP、双氰胺组成的配方在控制木材试样燃烧速度和降低总热释放量方面效果显著;尿素、双氰胺、磷酸组成的配方在提高载药量、降低热释放速率、延长点燃时间、抑制二氧化碳生成率方面效果显著;3组配方在降低木材试样的质量损失率和有效燃烧热方面效果相近.综合各项分析结果,确定尿素、双氰胺、磷酸按1∶3∶4的比例(质量比)配制浓度为15%的阻燃液为最佳配方  相似文献   

2.
以热塑性聚氨酯(TPU)为基底,以聚磷酸铵(APP)、氰尿酸三聚氰胺(MCA)和硼酸为复合改性剂,制备了一种环保型膨胀阻燃TPU复合材料。通过锥形量热仪和烟密度测试对复合材料的燃烧、抑烟和热稳定情况进行了研究,结果表明:APP/MCA/硼酸阻燃体系可降低复合材料热释放速率峰值(最高降幅达到约80%)和总热释放量,促进了致密炭化层的生成,有效抑制了挥发组分的生成。极限氧指数(LOI)结果表明:阻燃体系提高了LOI;添加质量分数15%APP、2.5%MCA、2.5%硼酸的TPU复合材料的LOI最高,达到了32%,该样品达到了最高的UL-94等级。热重分析结果表明TPU复合材料具有更好的热稳定性。APP、MCA、硼酸对膨胀阻燃TPU复合材料具有抑烟和阻燃的作用。  相似文献   

3.
利用热重分析技术,对不同阻燃剂处理过的红松的热解行为进行了研究。结果表明,经单组分阻燃剂处理的木材试样中,聚磷酸铵和硼酸锌处理的木材表现出较好的阻燃性能;氢氧化铝和三聚氰胺对木材热解影响不明显,阻燃效果不好。而经多组分阻燃剂处理的木材试样中,混合阻燃剂对木材的热解影响显著,表现出良好的阻燃性,阻燃能力要明显好于单组分的。其中聚磷酸铵三聚氰胺硼酸锌组合的阻燃效果最好,把木材的失重时间从31min推迟到55min,最大失重速率从2.76mg/min降到0.75mg/min,失重率从97.19%减少到76.30%。  相似文献   

4.
制备了三聚氰胺-双氰胺甲醛共聚树脂磷酸盐(PMDF),用红外分析仪进行了表征。讨论了不同配比下产品的性质。结果表明,当n(三聚氰胺):n(双氰胺)为1:0.15,n(甲醛)=n(双氰胺)+3n(三聚氰胺)和,。(磷酸):n(三聚氰胺)=1:1时,产品的粘度、含磷量适宜,甲醛释放量低于德国E1级标准,具有较好的性能。  相似文献   

5.
张晴  周巍 《科技信息》2008,(6):312-313
利用锥形量热仪进行实验,对比分析不同配方比下膨胀型阻燃PC /ABS合金材料的点燃时间(TTI)、热释放速率(HRR)、质量损失速率(MLR)、火灾危险性指数 (PkHRR/TTI)等燃烧参数,进而全面了解不同配方比下材料的燃烧性能以及阻燃效果.在实验基础上对含不同比例的聚磷酸铵(APP)与三聚氰胺(MA)的膨胀型阻燃剂不同阻燃机理进行讨论.  相似文献   

6.
用质量分数为18%(基于液体树脂)的三聚氰胺和不同缩聚度脲醛树脂制备了三聚氰胺改性脲醛(MUF)树脂,将聚磷酸铵及其他阻燃助剂与MUF共混后得到阻燃胶黏剂并用于制备阻燃胶合板。结果表明,当尿素与甲醛预先缩聚至水洗数为2.5~7.5时,所制MUF树脂的贮存稳定性良好;在MUF中阻燃剂质量分数小于80%时,胶合板的胶合强度满足国家Ⅱ类胶合板标准,甲醛释放量满足E1级标准;用该阻燃胶黏剂制备的阻燃胶合板,经锥形量热仪燃烧试验,其释热速率和释热总量较普通胶合板有显著下降。分析认为,将MUF树脂与聚磷酸铵阻燃剂共混制得的阻燃胶黏剂,其胶合性能和甲醛释放量满足国家标准要求;用该阻燃胶黏剂对胶合板进行表面处理阻燃性能良好。  相似文献   

7.
摘要: 为了增强聚氨酯硬泡在燃烧过程中的的阻燃性能和抑烟性能,以聚磷酸铵与氢氧化镁组成协效阻燃剂加入聚氨酯中制备了阻燃聚氨酯硬泡。通过临界氧指数测定仪、水平垂直燃烧测定仪、锥形量热仪和电子万能试验机研究了聚磷酸铵和氢氧化镁不同配比对聚氨酯泡沫塑料的阻燃性能、燃烧行为和压缩强度的影响。并用扫描电镜观察了阻燃材料燃烧后残炭的微观结构。结果表明,加入30份聚磷酸铵和10份氢氧化镁的聚氨酯硬泡的氧指数达27.5%,最大热释放速率为113.5 KW/m2,比纯聚氨酯硬泡的最大热释放速率下降了22.3%,最大烟释放速率下降58.9%。成炭致密,有良好的阻燃效果。证明复合阻燃剂加入能够增强聚氨酯材料的阻燃抑烟性能。  相似文献   

8.
将聚磷酸铵(APP)、磷酸三(β-氯异丙基)酯(TCPP)、氰尿酸三聚氰胺(MCA)、可膨胀石墨(EG)及EG与APP复合阻燃剂分别添加于硬质聚氨酯泡沫(RPUF),采用氧弹量热仪、氧指数仪、燃烧背温测试仪及锥形量热仪研究了阻燃RPUF燃烧热值(HoC)与氧指数、炭层阻隔作用及热释放等阻燃性能参数的相关性;采用X射线光电子能谱表征了RPUF/APP及RPUF/EG/APP体系燃烧热值测试后残炭表面P元素的化学状态. 研究表明,各阻燃RPUF的HoC由低到高的顺序为RPUF/APP,RPUF/EG/APP,RPUF/TCPP,RPUF/MCA,RPUF/EG,其中RPUF/EG/APP的氧指数相对最高,炭层阻隔效应较好,热释放及质量损失相对最低,产烟量适中,综合阻燃性能最好. RPUF/EG/APP燃烧热值测试残炭表面五氧化二磷比例(57.9%)大于RPUF/APP(35.9%). 阻燃RPUF的HoC主要与体系元素组成及阻燃剂HoC的贡献有关,也与膨胀阻燃体系中组分的相互作用有关;而氧指数、炭层的阻隔作用、热及烟释放等阻燃性能主要取决于阻燃机理.   相似文献   

9.
将可膨胀石墨(EG)与聚磷酸铵(APP)复合用于阻燃硬质聚氨酯泡沫(RPUF),采用极限氧指数及锥形量热仪研究了EG/APP对RPUF燃烧性能的影响;通过扫描电镜、热失重分析及X射线光电子能谱表征了RPUF/EG/APP残炭的微观形貌、热降解行为及化学组成. 结果表明,添加质量分数20%、质量比为7:3的EG/APP阻燃RPUF的协同效果最好,氧指数可达36.0%,热释放速率最小,有一定的抑制产烟和CO释放的作用. 在阻燃RPUF燃烧过程中,EG热解残炭虽松散,但燃烧初期抑制烟气效果突出;APP残炭连续致密,但热稳定性不足,且易于生烟;而RPUF/EG/APP残炭隔热效果显著、抑制烟气效果较好. 其作用机理与多磷酸渗入EG残炭,增加了炭层的耐热性及炭层表面N/C、P/C元素摩尔比的增加有关.   相似文献   

10.
榉木薄板阻燃处理工艺研究   总被引:2,自引:0,他引:2  
研究了氮磷系阻燃剂对榉木薄板的最佳阻燃处理工艺,选用由双氰胺、甲醛、尿素、磷酸二氢铵以一定比例配成的阻燃液,研究了温度、时间、pH及阻燃液浓度对阻燃性能的影响。结果表明:一次浸渍液质量分数为20%,时间为48h,pH=12,在100℃烘干6h;二次浸渍液质量分数为10%,时间为22h。经测试所得阻燃榉木的阻燃性能可达阻燃二级。相同条件下不变,将榉木薄片放入阻燃液中后一起放入超声波仪中,一次浸渍和二次浸渍时间分别为1h和1.5h,可达同样效果,实验效率明显提高。  相似文献   

11.
采用微胶囊化聚磷酸铵与季戊四醇复配(APP∶PER=3∶1)填充三元乙丙橡胶(EPDM),制备新型阻燃EPDM材料,考察膨胀型阻燃剂(IFR)的填充量对EPDM材料的燃烧性能和热学性能的影响。结果表明,APP和PER复配使用,可协同提高EPDM的阻燃性能。当IFR填充量为40%时,材料的极限氧指数(LOI)可达到31%,UL94垂直燃烧等级达到V0级;最大热释放速率下降81.2%,总释放热降低30.4%;同时EPDM材料高温区热稳定性明显提高,且材料燃烧后可形成膨胀炭层,700℃下残渣量从0.9%提高至17.0%。  相似文献   

12.
双环笼状磷酸酯在膨胀阻燃涂层中的应用   总被引:2,自引:1,他引:1  
将双环笼状磷酸酯应用于丙烯酸树脂膨胀阻燃涂层,通过燃烧隔热和烟密度测试及热失重分析研究双环笼状磷酸酯对膨胀阻燃涂层耐火时间、产烟量及热稳定性的影响规律;利用光学显微镜及X-射线光电子能谱对膨胀炭层的微观形貌、元素组成及化学状态进行了研究.结果表明,涂层厚度为0.5mm、耐火时间为11 min时,与聚磷酸铵-季戊四醇-三聚氰胺传统膨胀阻燃涂层相比,改性双环笼状磷酸酯与聚磷酸铵、三聚氰胺复配的膨胀阻燃涂层背温下降了60℃,最大烟密度降低了58%,热稳定性提高了65℃.  相似文献   

13.
为了得到阻燃性能最佳的季戊四醇双磷酸蜜胺盐(MPP),利用正交设计法研究由磷酸、季戊四醇和三聚氰胺制备季戊四醇双磷酸蜜胺盐(MPP).通过方差分析,探讨了原料配比对MPP阻燃性能的影响.实验结果表明:磷酸和季戊四醇用量的改变对MPP的膨胀度和剩炭率影响显著,三聚氰胺的用量对MPP的膨胀度和剩炭率无明显影响.MPP制备的最佳原料(磷酸、季戊四醇和三聚氰胺物质的量)配比为3∶1∶3.MPP添加质量分数为30%可使聚氨脂泡沫(PUF)氧指数达27.2%,MPP使PUF燃烧过程中的热量释放、CO和CO2排放大大降低.  相似文献   

14.
在温度65℃下,反应2 h,合成三聚氰胺-双氰胺-甲醛三元阳离子缩聚物高效絮凝脱色剂,再通过添加甲醇和尿素降低游离甲醛含量,得到物质的量的比为三聚氰胺∶双氰胺∶氯化铵∶甲醛∶甲醇∶尿素=1∶3∶2∶15∶2. 5∶0. 1的高效低游离甲醛絮凝脱色剂,游离甲醛含量降低到1. 51 mg/L.在处理模拟废水时,最佳脱色剂用量的质量分数为0. 28%,NaOH用量的质量分数为0. 26%,脱色时间20 min,pH 8,脱色率达到99. 91%.  相似文献   

15.
采用熔融共混挤出法,制备了掺杂少量硬硼钙石(CB)或硼酸锌(ZB)的阻燃聚丙烯(PP)复合材料,研究了CB和ZB对填充蜜胺包覆聚磷酸铵(APP-102)、三聚氰胺氰尿酸盐(MCA)阻燃PP复合材料的燃烧性能、热稳定性、机械性能、熔融结晶性能的影响. 结果表明:少量CB或ZB(质量分数为2.0%)能有效提高阻燃PP复合材料的阻燃性能,极限氧指数(LOI)从25.7%分别提高到27.6%和27.7%,UL-49等级从V-2提升到V-0,热释放峰值(pHRR)和总放热量(HRR)有一定程度的降低; CB和ZB有效改善了阻燃PP复合材料的热稳定性,燃烧时硼元素在表面促进形成连续紧密的炭层; 少量CB或ZB的添加不仅没有劣化阻燃PP复合材料的机械性能,而且使拉伸模量、弯曲模量略有升高,同时提高了阻燃PP复合材料的结晶速率和结晶度. 因此,CB与ZB类似,可被应用于PP的协同阻燃工艺.  相似文献   

16.
聚磷酸铵阻燃剂制备工艺研究   总被引:2,自引:1,他引:1  
以磷酸二氢氨和尿素为原料,采用磷酸铵热缩合法制备聚磷酸铵阻燃剂。对反应温度、聚合时间和原料摩尔配比进行单因素实验,结果表明:反应温度在300℃-320℃,反应时间为150m in,反应物(磷酸二氢氨∶尿素)摩尔比为1∶1时,产品的阻燃性能最好,聚合度较大。  相似文献   

17.
介绍了锥形量热仪的原理和测试方法,在辐射能量为50kW/m2的条件下对煤矿井下使用的整芯阻燃输送带、尼龙输送带、油松和煤的燃烧特性进行了实验研究,得到了各自的燃烧特征参数.实验结果表明:从热释放性能、产生的CO、释放的烟雾以及烟雾的影响方面综合分析,尼龙输送带着火以后的危害最大,木材燃烧后的危害最小.但是,橡胶整芯阻燃胶带在燃烧过程中释放的CO的浓度最大.在所给定的实验条件下,煤的耐火性能稍差,尼龙输送带、木材和橡胶整芯阻燃胶带三种材料的耐火性能差异不大.  相似文献   

18.
采用CO2与环氧丙烷共聚产物聚碳酸亚丙酯多元醇(PPC)、2,4-甲苯二异氰酸酯(TDI)、1,4-丁二醇(BDO)和羟基硅油为主要原料,合成单组份醇溶性聚氨酯,并向其中添加由聚磷酸铵、三聚氰胺、季戊四醇三者组成的膨胀型阻燃体系,制得聚碳酸亚丙酯型醇溶性聚氨酯防火涂料.结果表明,当R值(n—NCO/n—OH)比值为1.4,羟基硅油的用量为3%,阻燃体系中(聚磷酸铵、三聚氰胺、季戊四醇)三者配比为6∶5∶3时,涂膜在水中浸泡72h后溶胀,耐火时间长达710s,耐水性及防火效果最优.  相似文献   

19.
以曱基丙稀酸曱酯(MMA)、丙稀酸丁酯(BA)和曱基丙稀酸(MAA)为单体,采用梯度乳液聚合法制备了水性丙稀酸酯乳液,并以聚磷酸铵(APP)-季戌四醇(PER)-三聚氰胺(MEL)为协同阻燃体系,以长余辉发光材料为储能发光物质,制备了一种环保水性发光防火涂料。结果表明,乳液合成配方中的不同单体配比对合成乳液的成膜性能有很大影响。mAPP:mPER:mMEL=7:3:4时,配制的涂料具有较好的防火阻燃性能;向防火涂料中引入长余辉发光粉后,所得产品耐酒精喷灯燃烧时间可达18min,防火等级为一级,且具有一定的光致发光功能。  相似文献   

20.
木塑复合材料燃烧性能的研究   总被引:3,自引:0,他引:3  
利用锥形量热仪等评价方法,从引燃时间、释热、质量损失和发烟等方面对木塑复合材料(WPC)以及阻燃WPC的燃烧性能进行了研究。结果表明:WPC的引燃时间为27 s,比人工林木材的引燃时间长,与中密度纤维板(密度086 g/cm3)相当;WPC的释热速率峰值404 kW/m2,燃烧1 200 s的释热总量为180 MJ/m2,平均有效燃烧热为28 MJ/kg,燃烧释热高于人工林木材;WPC的平均质量损失速率为7 g/(s·m2),低于人工林杨木和马尾松木材;WPC的发烟总量高于人工林木材。相对于聚丙烯(PP)而言,WPC的释热速率峰值远低于PP,木材的引入降低了PP的高释热速率,且质量损失率峰值也大幅度降低。阻燃WPC的释热速率和释热总量有所降低,但发烟量增大,尤其是含卤阻燃物质。因此,对于WPC不宜选择有卤阻燃剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号