首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
积分不等式用来估计积分值非常有力,利用权得到了广义Hlder不等式的推广:加Ar权和Aλr权的积分不等式,该不等式可被用来研究积分性质和用来估计积分值.  相似文献   

2.
利用权得到了Hardy-littlewood型微分形式的推广:加双权积分不等式.这个不等式是经典结果的推广,它可被用来研究微分形式的积分性质且用来估计微分形式的积分值.  相似文献   

3.
考虑一类高阶微分系统谱的带权估计,利用矩阵运算、分部积分、测试函数、Rayleigh定理和不等式估计等方法,获得了用前n个谱来估计第n+1个谱的上界的不等式,且其估计系数与区间的度量无关,其结论是文献定理的进一步拓展.  相似文献   

4.
考虑多项式算子谱的带权估计,利用分部积分、Rayleigh定理、Schwartz不等式等方法,建立了用前n个谱来估计第n 1个谱的上界的不等式,且其估计系数与区域度量无关.  相似文献   

5.
考虑膜振动Dirichlet问题的带权特征值上界估计,利用试验函数、分部积分以及不等式估计等方法,建立了用前n个特征值来估计第n+1个特征值的上界估计,其估计系数与区域度量无关。这个结果在力学和物理学中有着广泛的应用。  相似文献   

6.
考虑多项式微分算子带一般权第二特征值的上界估计的问题.利用试验函数、分部积分、Rayleigh定理和Schwarz不等式等方法与技巧,得到了用多项式微分算子的第一个特征值来估计第二个特征值的不等式,其估计系数与区间的几何度量无关。其不等式在物理学和力学中应用广泛,在微分方程的理论研究中起着重要的作用。  相似文献   

7.
考虑某类任意阶微分算子带一般权第二特征值的上界估计的问题。利用试验函数、分部积分、Rayleigh定理和Schwarz不等式等方法与技巧,得到了用任意阶微分算子的第一个特征值来估计第二个特征值的不等式,其估计系数与区间的几何度量无关。其不等式在物理学和力学中应用广泛,在微分方程的理论研究中起着重要的作用。  相似文献   

8.
微分方程带一般权的第二特征值的上界估计   总被引:3,自引:1,他引:2  
考虑微分方程带一般权的第二特征值的上界估计、利用试验函数,Rayleigh定理,分部积分,Schwartz不等式和Young不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关其结果在物理学和力学中有着广泛的应用,在微分方程的研究中起着重要的作用  相似文献   

9.
【目的】在误差为AANA序列的条件下,对Gassor和Müller提出的一类非参数回归函数积分权核估计进行研究。【方法】利用截尾方法和AANA序列的指数不等式进行研究。【结果】得到了非参数回归函数积分权核估计的P阶矩相合性、强相合性和完全相合性,通过数值模拟来验证结果的有效性。【结论】该结果推广和拓展了已有的相关结论。  相似文献   

10.
一类高阶椭园型方程谱的带权估计   总被引:1,自引:0,他引:1  
考虑高阶椭园型方程谱的带权估计,利用方程谱理论、分部积分和Schwartz不等式等方法,建立了用前n个谱来估计第n+1个谱的上界的不等式,其估计系数与所讨论的区域度量无关,其结果是一些研究的进一步推广,在力学和物理学中有一定的应用价值。  相似文献   

11.
考虑正则任意阶微分系统带一般权第二特征值的上界估计。利用试验函数,Rayleigh定理,分部积分和Schwarz不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。其结果在物理学和力学中有着广泛的应用,在常微分方程的研究中起着重要的作用。  相似文献   

12.
考虑某类高阶微分算子的带权第二特征值上界估计的问题。利用试验函数、分部积分、Rayleigh定理和不等式等方法与技巧,得到了用高阶微分算子的第一个特征值来估计第二个特征值的不等式,其估计系数与区间的几何度量无关。其不等式在物理学和力学中应用广泛,在微分方程的理论研究中起着重要的作用。  相似文献   

13.
考虑四阶微分系统特征值的带权估计,利用矩阵运算、分部积分、Rayleigh定理和不等式估计等方法,获得了用前n个特征值来估计第n 1个特征值的上界的不等式,其估计系数与区间的几何度量无关,其结果是文献[1]的进一步推广.  相似文献   

14.
朱敏峰  钱椿林 《科技信息》2010,(29):I0033-I0034
考虑某类正则微分算予的带权第二特征值上界估计的问题。利用试验函数、分部积分、Rayleigh定理和不等式等方法与技巧,得到了用正则微分算子的第一个特征值来估计第二个特征值的不等式,其估计系数与区间的几何度量无关。其不等式在物理学和力学中应用广泛.在微分方程的理论研究中起着重要的作用。  相似文献   

15.
研究上半平面带权Bergman投影的范数估计.结果表明:带权Bergman投影算子P_α将L~∞(Π)空间映射到上半平面Bloch空间,且满足不等式‖P_αf‖B_((Π))≤C‖f‖L~∞_((Π)),其中,C为常数,并给出C的精确值;构造一个新的上半平面Bergman投影,并给出它的一个范数估计.  相似文献   

16.
考虑高阶一致椭圆型算子带权第二特征值的上界估计.利用试验函数、Rayleigh定理、分部积分和Schwarz不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关.  相似文献   

17.
利用权因子得到Cn空间中具有非光滑边界强拟凸多面体上的带权因子的新的积分公式及其-方程的带权因子的解,避免了边界积分的复杂估计.其次,引进了权因子,使带权因子的积分公式在应用上具有更大的灵活性.  相似文献   

18.
考虑混合微分系统带权第二特征值的上界估计.利用试验函数,Rayleigh定理,分部积分和Schwartz不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。其结果在物理学和力学中有着广泛的应用,在常微分方程的研究中起着重要的作用。  相似文献   

19.
六阶微分系统带权第二特征值的上界   总被引:1,自引:0,他引:1  
考虑六阶微分系统带权第二特征值的上界估计。利用试验函数,Rayleigh定理,分部积分和Schwartz不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。其结果在物理学和力学中有着广泛的应用,在常微分方程的研究中起着重要的作用。  相似文献   

20.
考虑任意阶微分系统带权第二特征值的上界估计。利用试验函数,Rayleigh定理,分部积分和Schwartz不等式等估计方法与技巧,获得了用第一特征值来估计第二特征值的上界的不等式,其估计系数与区间的度量无关。其结果在物理学和力学中有着广泛的应用,在常微分方程的研究中起着重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号