首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
LiFePO4高温固相合成工艺优化研究   总被引:1,自引:0,他引:1  
采用正交试验法优化LiFePO4固相反应合成工艺,研究预烧温度、合成温度、保温时间等对锂离子电池正极材料LiFePO4电化学性能的影响.结果表明,预烧温度350 ℃、合成温度650 ℃、保温时间12 h为最佳合成工艺条件.按最佳合成工艺所制样品的首次放电比容量达151.7 mA·h/g,循环充放电30周后,其放电比容量仍为140.9 mA·h/g.  相似文献   

2.
以乙二醇为溶剂,尿素为添加剂,采用溶剂热法制备锂离子电池正极材料磷酸铁锂(LiFePO4)。采用XRD,BET,SEM和TEM等对产物的结构和形貌进行表征,运用恒流充放电测试对LiFePO4/C复合材料的电化学性能进行研究。研究结果表明:花状分级结构的LiFePO4由单晶纳米片组成,且具有开放多孔的特性,其单分散性良好,粒径约为8μm,振实密度达1.2g/cm3。LiFePO4/C样品的首次放电比容量达152.4mA·h/g;在0.2C,1C和2C倍率下比容量分别为134.3,118.5和103.7mA·h/g;当放电倍率为2C时,经过5个循环后,容量保持在100.1mA·h/g,容量保持率为96.7%。  相似文献   

3.
以FePO4.2H2O,Li2CO3和蔗糖为原料,采用碳热还原法合成LiFePO4/C材料.高温合成时采用木炭粉代替惰性气体保护以降低成本,对样品进行X射线衍射分析(XRD)、扫描电子显微镜(SEM)测试和电化学性能分析.结果表明:当合成温度为650℃时合成的材料具有较好的电化学性能,0.1倍率下首次放电比容量为153.0 mA.h/g,30次充放电循环后容量保持率为95%,具有良好的循环性能.  相似文献   

4.
通过聚甲基丙烯酸甲酯(PMMA)胶晶模板法制备尖晶石型LiMn2O4材料,并探讨焙烧温度对材料性能的影响.运用热重分析(TG)、X线衍射(XRD)、扫描电镜(SEM)、充放电测试和循环伏安测试等方法对LiMn2O4样品的结构、形貌以及电化学性能进行表征和测试.研究结果表明:在不同温度下制备的LiMn2O4样品均具有较好的尖晶石型结构,且粒径分布均匀:在700℃时制备的LiMn2O4样品(S-700)具有最佳的电化学性能,在3.0~4.4 V时,0.2C倍率首次放电比容量为130.9 mA·h/g; 0.5C倍率首次放电比容量为126.4 mA·h/g,50次循环之后容量仍有102.7 mA·h/g,具有良好的循环稳定性.  相似文献   

5.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

6.
采用水热反萃法合成了锂离子电池正极材料LiFePO_4,重点研究了温度对LiFePO_4结构、形貌和电化学性能的影响.分别采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、循环伏安(CV)、交流阻抗(EIS)及恒电流充放电测试对样品的结构、形貌和电化学性能进行了表征.结果表明:在140~250,℃范围内水热反萃法可以合成纯相的LiFePO_4.用制备的LiFePO_4作为电池的正极材料,其电化学测试表明:250,℃合成的样品极化最小,同时具有最小的电荷转移阻抗和最大的Li+扩散系数,0.1,C下首次放电比容量为151.7,m A·h/g,较高倍率下循环40次再采用0.1,C时的放电比容量可达到161.9,m A·h/g,具有良好的倍率循环性能.  相似文献   

7.
以廉价的Fe3 为铁源,通过溶胶和碳热还原两步法制备出锂离子正极材料LiFePO4,用XRD、SEM、交流阻抗和恒流充放电方法表征了材料的结构、形貌和电化学性能.结果表明,合成的材料具有橄榄石型晶体结构;碳可以抑制材料颗粒的团聚,降低电极反应阻抗;在0.1 C的放电倍率下,LiFePO4首次放电容量为103.3 mA·h/g,LiFePO4/C在放电倍率0.1 C、0.2 C和0.5 C下的首次放电容量分别为147.9 mA·h/g、133.3 mA·h/g和122.1 mA·h/g, 20次循环后容量衰减率分别为3.0 %、2.7%和2.4%.  相似文献   

8.
通过固相法合成了LiFePO4 /聚并苯(PAS)复合材料.纯的LiFePO4电导率仅为(0.1~1)×10-9 S/cm,合成LiFePO4/PAs复合材料电导率为2.0 S/cm,复合材料的电导率提高了10个数量级.LiFePO4/PAS复合材料具有优异的电化学性能,在室温1C倍率下首次放电容量为140 mA·h/g,经过200次循环后容量仍保持最初容量的97.14%.说明通过包覆PAS材料极大地提高了LiFePO4的大电流充、放电容量和循环性能.  相似文献   

9.
采用溶胶凝胶法合成了Li4Ti5O12负极材料,讨论了合成温度对Li4Ti5O12负极材料的影响。利用X线衍射分析(XRD)、扫描电镜(SEM)和恒流充放电测试对合成材料进行结构表征和电化学性能测试。结果表明:煅烧温度为800℃时,样品为颗粒分布均匀,结晶度良好的Li4Ti5O12;1C倍率时,首次放电容量达到154.6 mA·h/g,循环50次后,容量仍保持在141.8 mA·h/g。  相似文献   

10.
分别以乙醇、乙二醇以及丙三醇/水为溶剂,采用溶剂热法合成橄榄石结构的磷酸亚铁锂(LiFePO4)。运用XRD,SEM和FTIR等手段,对产物晶体结构、颗粒形貌和表面微观结构进行表征,探讨溶剂热合成LiFePO4时不同溶剂对产物形貌和结构的影响,同时运用恒流充放电测试和循环伏安方法对所得产物的电化学性能进行研究。研究结果表明:以乙二醇为溶剂合成的LiFePO4呈均匀片状结构,具有粒度小、厚度薄的特点,这种结构缩短了锂离子的扩散距离,有利于电化学性能的提高,其0.1C倍率放电比容量达到161.7 mA.h/g,1C倍率放电时容量仍保持132.6 mA.h/g;在0.1C倍率下,50次循环后容量保持率为98.02%。  相似文献   

11.
碳包埋固相法制备LiFePO4及其电化学性能研究   总被引:1,自引:0,他引:1  
用石墨粉包埋取代保护性气氛,一步固相法制备LiFePO4.采用XRD,FTIR,SEM和恒电流充放电等方法对材料结构、形貌和电化学性能进行了表征.利用循环伏安法研究了Li+在LiFePO4中的嵌/脱过程.结果表明,这种改进的固相法可以合成亚微米级纯相橄榄石结构LiFePO4,所得材料具有良好的倍率性能和循环稳定性,在0.1C和1C倍率首次放电比容量分别为148.3和131.9mAh.g-1,1C和5C倍率下循环50次容量保持率分别为96%和90%.由循环伏安法计算得到阳极峰和阴极峰处Li+的表观扩散系数分别为1.64×10-13和1.94×10-13cm2.s-1.  相似文献   

12.
以Li2CO3和V2O5为原料,进行了固相法制备锂离子电池正极材料Li1+xV3O8的实验研究.通过TG-DTA,XRD及交流阻抗等测试方法考察了合成条件对Li1+xV3O8样品结构、电导率及电化学性能的影响.XRD结果表明:随着焙烧温度的提高,产物的(100)衍射峰相对强度增强,这使Li+在LiV3O8中嵌入脱出的路径较长.交流阻抗测试表明:随着烧结温度的提高,电导率增大,而随着烧结时间的延长,电导率出现先增大而后又减小的趋势.电化学测试结果表明,580℃焙烧20 h合成的产物具有优良的电化学性能,放电比容量最高达到254.0 mAh.g-1,10次循环后仍保持在245.6 mAh.g-1,...  相似文献   

13.
以Li_2CO_3和NH_4VO_3为原料,采用非熔融态的固相反应法合成了锂离子电池正极材料锂钒氧化物.通过TG-DTA,XRD分析确定了合成反应的主要历程.XRD测试表明,580℃焙烧10h获得的产物为单一相层状结构,晶型发育良好.循环伏安测试表明,Li~+在材料中嵌入脱出的机理不同,嵌入是分步进行的.恒电流充放电测试表明,锂钒氧化物的初始容量为252.9mAh.g-1,55次循环后容量保持率高达97.07%,循环性能优良.交流阻抗测试表明,材料具有较高的离子电导率,有利于提高其电化学性能.  相似文献   

14.
尖晶石型LiMn2O4的溶胶凝胶法制备   总被引:6,自引:1,他引:5  
采用溶胶 凝胶法合成了锂离子电池正极材料LiMn2O4·研究了干凝胶制备锰酸锂的机理·由于干凝胶燃烧时生成的产物颗粒很细,燃烧过程中就有大量的锰酸锂生成,剩下的Mn3O4和Li2O2在300℃左右已完全转化为锰酸锂,大大降低了合成温度·通过对700℃合成的锰酸锂XRD分析表明,样品的衍射峰峰形尖锐,晶型发育良好·考察了pH值对合成样品粒度及电化学性能的影响,SEM分析表明,随pH值增加,所得溶胶制备的锰酸锂电化学容量增加,当pH=6 0时合成样品颗粒分布均匀,达到亚微米级·以0 1C的电流、电压范围3 30~4 35V充放电测试表明,该条件下合成的样品初始放电容量为121.0mAh·g-1,显...  相似文献   

15.
锂离子电池正极材料LiFePO4/C的制备与表征   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法合成了LiFePO4/C复合材料,利用元素分析、X射线衍射(XRD)、扫描电镜(SEM)等方法对其进行了表征,将其组装成模拟电池测试了其电化学性能.结果表明:LiFePO4/C具有单一的橄榄石型晶体结构,碳粒子平均颗粒大小在1μm左右.LiFePO4/C复合材料在3.4 V处具有很好的充放电电压平台,与LiFePO4相比,具有更高的放电比容量和更好的循环性能,在60 ℃时的首次放电容量达到133 mAh/g,经20次循环后的容量保持率为93.8%.  相似文献   

16.
Nanostructured LiFePO4/C cathode material was prepared by FePO4·2H2O/C precursor by in situ restriction reaction.The synthesized LiFePO4/C cathode material presents a narrow distribution of nano-sized particles and exhibits an excellent electrochemical property with various rates.The facile synthesis route for the preparation of nano-sized LiFePO4 material has the particular advantage of simple synthesis process and low synthesis cost.  相似文献   

17.
以SnCl4·5H2O,ZnCl2和N2H4·H2O为原料,用水热法制备Zn2SnO4纳米粉体.利用XRD,TEM和循环伏安等测试手段研究Zn2SnO4材料的结构、形貌及电化学性能.结果表明,当原料配比n(Zn)∶n(Sn)∶n(N2H4.H2O)=2∶1∶8时,180℃下水热合成24 h,得到晶型发育良好的纯相Zn2SnO4纳米材料.其首次放电和充电容量分别为1 634和709.7 mA.h/g,循环30次之后放电容量为483.7 mA.h/g,表现出较好的电化学性能.  相似文献   

18.
复合碳源包覆对LiFePO4/C正极材料性能的影响   总被引:1,自引:0,他引:1  
采用固相合成法在惰性气氛下合成了LiFePO4/C复合正极材料,采用比表面积(SSA)、X射线衍射(XRD)、扫描电镜(SEM)以及电化学测试等手段对合成样品进行了结构表征和性能测试;考察了采用蔗糖、柠檬酸、蔗糖与炭黑掺杂、蔗糖柠檬酸与炭黑掺杂等不同碳源对最终复合正极材料性能的影响。结果表明,当采用蔗糖柠檬酸与炭黑的复合碳源时,正极材料在碳含量相近的情况下比表面积得到了控制,粒度分布和振实密度没有明显的变化,0-1C比容量达154mAh/g,1C比容量达到了142mAh/g;但是采用复合碳源,材料的初始内阻和极化程度有所增大。  相似文献   

19.
Lithium iron phosphate coated with carbon (LiFePO4/C) was synthesized by improved solid-state reaction using comparatively lower temperature and fewer sintering time. The carbon came from citric acid, which acted as a new carbon source. It was characterized by thermogravimetry and differential thermal analysis (TG/DTA), X ray diffractometer (XRD), Element Analysis (EA) and Scanning electron microscope (SEM). We also studied the electrochemical properties of the material. The first discharge capacity of the LiFePO4/C is 121 mAh·g−1 at 10 mA·g−1, at room temperature. When the current density increased to 100 mA·g−1, the first discharge capacity decreased to 110 mAh·g−1 and retained 95% of the initial capacity after 100 cycles. The LiFePO4/C obtained shows a good electrochemical capacity and cycle ability at a large current density. Foundation item: Supported by the National Natural Science Foundation of China (20071026) Biography: ZHOU Xin-wen (1980-), male, Master, research direction: inorganic material chemistry.  相似文献   

20.
以棕刚玉,Al,Si,Al2O3为原料,利用一步工艺合成了Sialon/刚玉复合材料·研究了Si3N4/AlN复合添加剂对复合材料组织、性能以及复合材料中N含量的影响·研究结果表明:材料中N含量随着Si3N4/AlN复合添加剂的增加而增加,材料的强度随着Si3N4/AlN复合添加剂的增加呈现出先升高后降低的变化趋势;当氮化温度超过1330℃,氮化时间超过8h后,添加Si3N4/AlN的材料中N含量基本上达到饱和值,添加Si3N4/AlN可以降低Sialon相的合成温度;1230~1280℃是一个重要的前期氮化温度,添加Si3N4/AlN的材料在该温度可完成整个氮化反应的94 2%,早期对Al,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号