首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
一、引言 PVAc(醋酸乙烯)是PVA(聚乙烯醇)的主要原料。PVAc的制备过程为:乙炔与醋酸在催化剂的作用下进行加成反应制得VAc(醋酸乙烯),VAc在引发剂的作用下进行自由基反应聚合成PVAc。VAc有本体、溶液、乳液和悬浮4种聚合方法,安徽皖维高新材料股份有限公司采用的是溶液聚合法。溶剂是甲醇。  相似文献   

2.
利用脉冲等离子体聚合的低处理能量密度、高基团保留的特点,以醋酸乙烯酯(VAc)的脉冲等离子体聚合方法对聚丙烯(PP)表面作了改性.研究了脉冲占空比(τon/τoff)对VAc等离子体聚合物的结构与性能的影响.聚合量随着占空比的提高呈先升高,然后在占空比150/50时降低,这是等离子体的聚合/刻蚀共同作用的结果.由于VAc等离子体聚合是通过逐步增长聚合机理(RSGP)进行的,其聚合物中含有交联结构.VAc聚合物可部分被醇解为聚乙烯醇结构,其交联结构是抑制进一步醇解的因素.但红外分析及VAc聚合物中可溶性物质含量测试结果表明,低占空比下VAc聚合物的结构破坏较轻且低交联结构较多,占空比50/150处理表面醇解后的表面水接触角降低到66.0°,改善了载体PP表面的亲水性.  相似文献   

3.
稳定自由基存在下甲基丙烯酸甲酯的聚合研究   总被引:1,自引:0,他引:1  
研究了以2,2,6,6-四甲基-1-哌啶氧化物(TEMPO)作为稳定基,过氧化苯甲酰(BPO)为引发剂,三氟乙酸酐(TFA)为加速剂,极性单体甲基丙烯酸甲酯的聚合。在TFA的促进下,聚合速率明显加快,17h可达62%的转化率,在单体化率低下30%时,分子量随转率线开增长,分子量分布较窄,转化率较高时,分散性变大,分子量变化不大,随着聚合体系温度升高,分散性变窄,140℃为其较理想的聚合温度,通过对模型聚合物的核磁共振(^1HNMR))分析,发现氧氮自由基部分脱落,解释了极性单体洒能在稳定基存在下进行活性聚合的原因,对氧氮自由基易从主链脱落的可能解释是酯基的强电子效应削弱了C-O键,从而使氧氮自由基与主链的连接减弱,导致分子量不可控制。  相似文献   

4.
PHMS/VAc复合乳液的研究   总被引:3,自引:0,他引:3  
合成了含氢聚甲硅氧烷(PHMS)/醋酸乙烯酯(VAc)/羟甲基丙烯酰胺(NMA)复合乳液,研究了聚合方法、乳化剂配比及用量对乳液的粒径、粘度、表面张力及存放稳定性的影响。结果表明:适量采用非离子和阴离子的复合乳化剂可明显提高乳液性。聚合方法对乳液性能亦有重要影响。  相似文献   

5.
以醋酸乙烯酯(VAc)和丙烯酸丁酯(BA)为原料,用半连续加料法合成共聚物。研究VAc/BA共聚合的3个阶段(种子预聚合阶段、单体滴加阶段和保温熟化阶段)所得共聚物组成和微观序列结构的变化规律,采用FT-IR、13C-NMR、DSC表征聚合物的结构和玻璃化转变温度(Tg),分析聚合物共聚组成和序列结构随反应阶段的变化,采用1级Markov模型分析共聚物的序列结构分布。研究结果表明,半连续加料法制备的VAc/BA共聚物组成与序列结构在不同反应阶段存在明显变化。在预聚合阶段,单体浓度处于充溢态,聚合物中含有富BA单元的链段和富VAc单元的链段;反应进入单体滴加阶段,单体浓度处于饥饿态,生成共聚组成接近于加料比的均匀共聚物, VAc的数均序列长度(la)与BA的数均序列长度(lb)均较小。  相似文献   

6.
紫外(UV)光聚合法合成高强吸水性聚丙烯酸钠,对比于传统的聚合方法具有工艺过程简单,反应时间短,易操作.可在常温下进行等优点.本文研究了中和度,光照时间等因素对交联聚丙烯酸钠吸水性的影响.结果表明,在未加任何引发剂和交联剂、一定的中和度情况下,光照时问为20min时,聚丙烯酸钠吸水树脂具有很高的吸水率和很好的耐盐性.吸去离子水率为3120g/g,吸生理盐水(0.9%Nacl水溶液)率为701g/g,吸雨水(pH约为六)率为2260g/g,吸人工尿率为196g/g,吸人工血率为467g/g.  相似文献   

7.
提纯过的漆酚在Na2SO4的乙醇/水溶液中用恒电位法,以铂或不锈钢为研究电极,其电位不低于0.680V(vs.SCE),进行电化学聚合,获得电化学聚合漆酚(EPU)。探讨了较适宜的聚合方式及反应条件,采用红外光谱、差热-热重(DTA-TG)等手段进行表征,确定其结构。研究发现,采用恒电位(1.600V)在不锈钢电极上电化学氧化聚合50min可获得EPU,其聚合部位主要在于漆酚的长侧碳链基上的不饱和双键。  相似文献   

8.
纳米SiO2对Vac乳液聚合及乳液性能影响的研究   总被引:1,自引:0,他引:1  
采用原位乳液聚合法制备了聚醋酸乙烯酯(VAc)/纳米SiO2复合乳液,考察了纳米SiO2对VAc乳液聚合过程和乳液性能的影响.结果表明:纳米SiO2对VAc转化率和接枝率有一定影响;复合乳液中乳胶粒的形态、乳液的粘接强度、热稳定性和粘度等均明显不同于常规乳液。  相似文献   

9.
通过甲基丙烯酸甲酯(MMA)的自由基聚合实现了纳米碳酸钙表面聚甲基丙烯酸甲酯(PMMA)接枝改性,对碳酸钙表面接枝的PMMA进行了分析表征,并对接枝改性机理进行了探讨。MMA接枝聚合改性纳米碳酸钙粒子的红外分析和碳酸钙表面接枝聚合物的。H-核磁分析表明:甲基丙烯酸甲酯聚合在纳米碳酸钙的表面;凝胶渗透色谱分析表明:碳酸钙表面接枝的PMMA相对分子质量大于MMA水相均聚物,而且分子量分布较均聚物宽;随着MMA单体用量的增加,纳米碳酸钙表面PMMA接枝率增加,接枝密度增加,但PMMA在纳米碳酸钙表面的接枝聚合度基本不变。  相似文献   

10.
偶氮二异丁脒盐酸盐引发丙烯酰胺聚合的研究   总被引:2,自引:0,他引:2  
李玉江 《山东科学》1996,9(2):43-45
本文研究了偶氮二异丁脒盐酸盐引发丙烯酰胺聚合的反应动力学,得出聚合速率方程式为RP-KP(AIBA)^0.5(AM),测定了聚合表现活化能,并研究了聚合条件对产物分子量及其分布的影响,利用该引发-聚合体系,获得了相对分子质量上千万的超高分子量聚丙烯酰胺。  相似文献   

11.
肌动蛋白的聚合和解聚动力学过程与其功能的行使有密不可分的关系:肌动蛋白如要在细胞内行使其功能就一定涉及到其聚合动力学过程.肌动蛋白的聚合过程可分为4个步骤:肌动蛋白单体的活化;肌动蛋白单体聚合成核;肌动蛋白纤维生长的过程;聚合达到动态平衡,肌动蛋白纤维不再生长.一些影响肌动蛋白聚合过程的因素,比如,核酸和肌动蛋白相关蛋白也在文中做了讨论.其目的在于更深入地了解生物大分子如何组装成更复杂的体系以及这些体系在细胞中怎么行使功能.  相似文献   

12.
聚乳酸的固相聚合研究   总被引:7,自引:0,他引:7  
对聚乳酸的新聚合方法-固相聚合进行了研究,探讨了聚合温度、聚合时间、氦气流量、催化剂等对聚乳酸粘均相对分子质量的影响;验证了固相聚合方法的有效性。  相似文献   

13.
含功能性单体的苯/丙乳液的聚合稳定性   总被引:8,自引:3,他引:8  
采用乳液聚合工艺,以过硫酸钾为引发剂,合成了含功能性单体甲基丙烯酸羟乙酯和丙烯酸的苯乙烯/丙烯酸丁酯共聚乳液,系统研究了乳化体系、引发体系、含功能基单体含量、聚合工艺和聚合温度等对乳液聚合过程稳定性的影响,发现聚合温度降低,采用半连续聚合工艺以及适当提高乳化剂的浓度均有利于乳液聚合反应的稳定性提高。  相似文献   

14.
以间歇水相沉淀聚合方法对AN/VAc/SSS三元共聚进行了研究,确定了合适的聚合工艺条件,可以得到粘均相对分子质量在5.0×10~4~7.5×10~4的聚合物.改变AN/VAc/SSS的比例可以制得不同染色饱和值的高聚物,当高聚物中VAc含量在9%左右,SSS含量在0.35%时,所得腈纶的染色饱和值达到了3.0%.  相似文献   

15.
采用水相沉淀聚合法,以NaClO3-NaHSO3氧化还原体系为引发剂,对丙烯腈(AN)/醋酸乙烯酯(VAc)/甲基丙烯酸羟乙酯(HEMA)三元共聚进行了研究。重点考察了总单体浓度、引发剂浓度及氧化剂还原剂比例、pH值、聚合温度、聚合时间等工艺条件对聚合物转化率、固含量、相对粘均分子量的影响。通过红外分析证明了产物。  相似文献   

16.
叙述了磺化丁二酸单酯(简称JE-1)的合成方法,反应原理及工艺流程并测定了有关性能。该乳化剂适用于烯类单体的乳液聚合,在用于苯乙烯-丙烯酸丁酯-丙烯酸体系的乳液共聚合时效果较好。  相似文献   

17.
18.
利用溶液聚合法制备了水溶性淀粉接枝丙烯酸(AA)/醋酸乙烯酯(VAc)固沙剂乳液,考察了单体质量比、AA中和度、引发剂用量、聚合温度对乳液性能的影响,采用FT-IR、TG对乳液进行了表征,并初步研究了固沙剂的表面固化效果、抗压强度等固沙性能。结果表明单体质量比(mAA∶mVAc)为2∶1、AA中和度为25%、引发剂质量为单体质量的0.8%、聚合温度为80℃时,固沙剂乳液外观、黏度及放置稳定性等均较优;固沙剂在200℃下热稳定性良好,固化作用及抗压强度能够满足实际固沙应用中的要求。  相似文献   

19.
针对目前醋酸乙烯聚合中反应速率及单体转化率较低的问题,以过硫酸钾为引发剂、十二烷基硫酸钠为乳化剂,采用预乳化间歇聚合工艺,研究了超声波功率、引发剂用量、乳化剂用量、单体用量、反应温度等因素对超声波辅助醋酸乙烯乳液聚合反应速率的影响,并对超声波辅助乳液聚合的机理进行了探讨,分析了超声波影响聚合的途径.结果表明,在实验范围内,外加超声波可以提高聚合反应速率和单体转化率,聚合反应的表观活化能达51.55 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号