首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 140 毫秒
1.
本文建立长江河口温排水三维数值模式,模拟华能石洞口第一电厂二期改进工程和综合考虑整个长江河口电厂夏季温排水输运扩散,分析温排水对敏感目标的影响.受长江径流和混合作用,温排水沿南支南岸向下游输运扩散.在仅考虑本工程情况下,在排水口附近温升出现了超过2.0℃的区域,但在取水口温排水的影响微小,温升仅为0.04℃左右.全潮平均表层温升3.0、2.0、1.0℃的面积分别为0.12、0.6、1.42 km~2.潮周期和全潮平均温升1℃包络线未进入陈行水库水源地保护区.在综合考虑整个长江河口电厂情况下,温升超过1℃的影响范围大,主要分布在太仓发电厂至外高桥发电厂下游沿南支南岸约50 km的水域内.华能发电厂附近和下游水域温升显著,出现了温升超过4℃的较大范围.全潮平均表层温升3.0、2.0、1.0℃的面积分别为2.34、4.16、13.52 km~2.沿本工程取水口和排水口断面,温升沿岸大、离岸小,在近岸出现垂向分层.温升1℃等温线侵入了陈行水库水源地保护区.在陈行水库水源地二级保护区内大潮、中潮、小潮和全潮平均温升1℃的面积分别为1.9、1.82、1.75和1.83 km~2.长江河口电厂夏季排放温排水对青草沙水库和东风西沙水库水源地保护区,以及九段沙湿地自然保护区和崇明东滩鸟类自然保护区均没有影响.  相似文献   

2.
本文基于2014年11月23日至12月2日观测资料,分析石洞口附近水域电厂温排水输运扩散.在大潮期间,从水温纵向断面分布看由电厂排放的温排水明显,落潮时段最大温升4.1oC,涨潮时段最大温升达到5.1oC;仅在排水口附近水温出现分层现象,其他地方因潮流的强烈混合作用,水温垂向分布趋于均匀.从水温和温升平面分布看,在落潮时段沿岸水温高,离岸水温低,在华能石洞口电厂排水口附近温升最大量值达到4.0oC,温排水在落潮流和科氏力作用下沿岸向下游输运扩散.在涨潮时段石洞口附近高温水相比于落潮时段偏向上游,离岸范围大,温升最大值达到4.2oC.从定点连续测点的流速、流向和水温随时间变化看,若测点位于电厂上游涨潮期间水温上升,若测点位于电厂下游落潮期间水温上升,水温受附近电厂温排水影响.测点离电厂排水口越近温升越高、垂向变化越明显.小潮期间,由于寒潮过境,因表面失热,水温比大潮期间低,最大水温出现在电厂排水口附近水体中层.温升的分布特征与大潮期间类似,最大量值达到5.0oC,比大潮期间高了0.8oC,原因在于小潮期间潮流和潮混合较小,温排水口高温水不易向外输运扩散.  相似文献   

3.
采用改进的河口海岸海洋三维数值模式ECOM,考虑潮汐、径流、风应力和江表面热通量的作用,计算和分析石洞口电厂扩建工程夏季温排水的输运扩散.数值模式计算流速流向和实测资料符合良好,表明模式能较正确地模拟长江河口的水动力过程.模式计算结果表明,温排水分布在沿岸一带,受径流作用,下游受影响范围远较上游大.在本工程排水口附近,大潮和小潮平均温升分别为2.34和2.84℃,表层温升为1.0℃的面积分别为0.09和0.20 km~2,底层温升为1.0℃的面积均为0.09 km~2.大潮期间流速大,平流和侧向扩散作用大,造成大潮期间本工程排水口附近温升大小、温升沿岸扩展的范围和量值明显比小潮期间小.  相似文献   

4.
采用平面二维潮流温度场模型对位于半封闭型海湾内的某电厂温排水分布情况进行分析研究,主要预测不同典型水文条件下的温排水影响范围是否满足世行标准(排放口半径100 m处温升不得超过3℃),从而为电厂取、排水口设计方案(位置及型式等)提供依据。  相似文献   

5.
三沙市于2012年7月24日正式成立,是海南省3个地级市之一,下辖两沙群岛、中沙群岛和南沙群岛的岛礁及其海域,市政府位于西沙群岛的永兴岛,是中国位置最南、海域面积最大、陆地面积最小和人口最少的地级市. 目前,三沙市常住人口约1400人,流动人口2000余人.三沙市地处南海,东邻菲律宾,南接印度尼西亚,西靠越南,包括280多个由珊瑚礁构成的岛、礁、滩、沙和暗沙及其海域,陆地面积约10平方千米,海域面积约200万平方千米.这里的气候属热带海洋性季风气候,全年高温多雨,干湿季节分明,每年6~11月为多雨期,12月至次年5月为少雨期,年平均降雨量1500 ~ 1900毫米.海面平均水温24 ~ 30℃,海水平均盐度32‰~35‰,海水透明度20~30米.  相似文献   

6.
为研究电机的超温问题,以负载状态的地铁用电动机为例,考虑电机结构的不对称性,建立三维全域物理模型。采用ANSYS软件,旋转部件应用多重旋转坐标系,进行流动与传热耦合仿真计算,探究了额定状态下电机内流场和温度场分布特点,以及转速和环境温度对其流动、传热特性的影响。此外,采用预埋热敏电阻的方法对在额定工况运行的电机定子线圈进行测温,验证了数值模型的可靠性。数值分析结果表明:从纵截面来看,轴向中心平面偏非传动端侧约25mm处温度最高;从横截面来看,机箱底部与接线组支撑组件的夹角范围内温度最高,故全域模型比对称模型更合理。此外,随着电机转速增大,定子线圈最高温度近似线性升高,转速平均每升高1 000r/min,定子线圈最高温度升高6.2%,最高温升升高7.5%;随着工作环境温度升高,定子线圈最高温度近似线性升高,定子线圈最大温升也有小幅升高,环境温度平均每升高10℃,最高温度提高10.1%,最高温升提高2.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号