首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
迷宫密封泄漏对小流量离心叶轮气动性能影响的研究   总被引:1,自引:0,他引:1  
在考虑密封泄漏损失的情况下,对小流量二氧化碳离心叶轮进行了三维黏性计算流体动力学分析,对比了考虑密封泄漏前后的计算结果.在设计工况下,叶轮等熵效率下降了8.1%,表明对小流量离心压缩机性能及主流流动结构进行准确的数值预测,必须考虑密封泄漏.为了揭示密封泄漏对离心叶轮性能的影响,通过改变迷宫密封的间隙得到了不同的密封结构,并在设计工况、小流量工况和大流量工况下分别进行了数值分析.结果表明,在一定流量工况下,随着密封间隙的增大,密封泄漏损失系数近似线性增大,离心叶轮等熵效率随之近似线性地下降.  相似文献   

2.
以水翼侧端的间隙流场为研究对象,采用经过实验验证的空化流动数值模拟方法,获得不同间隙宽度下的流场信息.基于熵产理论分析发现:湍流耗散导致的熵产值占总熵产的比例最高,超过50%,其随间隙宽度的变化规律与总压差反映的能量损失接近,但熵产更能揭示流场的能量损耗细节.分析间隙涡流和空化流动特征可见:湍流耗散主要集中在旋涡外缘和空化末端区域,与旋涡的旋转方向及空化发展的稳定性相关.在小间隙宽度下,应更关注水翼附近的能量损失.随着间隙宽度的增大,空化会影响下游更远的流场,因此间隙宽度的影响须结合能量损失和流动特征进行综合评判.  相似文献   

3.
水力模型的非定常水动力特性对泵装置的安全运行稳定性具有重要影响,在考虑了水力模型与流道的水力相互作用基础上,采用雷诺时均Navier-Stokes控制方程和RNG k-ε湍流模型对多工况时S形贯流泵装置进行了全流道非定常数值模拟,分析了水力模型的非定常水动力特性.泵装置非定常数值预测结果与试验值进行对比,验证了数值模型的可信性.计算结果表明:随叶轮的旋转,叶轮轴向力的变幅小于径向力的变幅,在小流量工况时径向力变幅最大.不同工况时叶轮的非定常脉动轴向力受转频的影响程度大于非定常脉动径向力,轴向力和径向力的脉动主频均以低频为主.在叶轮的1个旋转物理周期内叶轮的径向力分量呈蝶形分布.随流量的增大,径向力的平均值也增大,绕Z轴方向的扭矩则逐渐减小.相比大流量和小流量工况时,叶轮叶片的脉动比值在高效工况时最小,表明偏离高效工况运行时,叶轮受周期性水动荷载的影响较大,应尽量避免泵装置在偏离高效工况区域运行.随流量的增大,导叶片的脉动比值也增大.  相似文献   

4.
为探究叶顶间隙对轴流泵外特性及空化性能的影响,基于修正的SST k-ω湍流模型和Z-G-B空化模型,对350ZQ-70型潜水轴流泵进行数值模拟,对比分析不同叶顶间隙下轴流泵的外特性曲线、叶轮流道内的压力脉动、空泡体积分数分布等.结果表明:随着间隙的增大,泵扬程和效率降低;小流量工况下流动失稳现象明显加强,扬程曲线会出现驼峰现象;进口边近轮毂侧比近轮缘侧更易发生空化;设计流量下,轮缘间隙空化首先出现在叶片中部,而不是叶片进口;叶片背面空化会影响相邻叶片工作面压力分布;存在临界间隙值,未达该值前,间隙增大主要降低叶轮的做功能力,对空化性能影响不大,超过该值后,空化稳定性降低,诱导压力脉动;对于实验泵,临界值在1.5~2 mm;随着间隙的增大,轮缘处空化程度不断增强,进口边空化程度反而有所减轻;根据轴流泵叶轮组装结构,从保护轮毂叶轮体的角度考虑,兼顾做功能力和运行稳定性,实验泵选择间隙为1.5 mm较为合适.  相似文献   

5.
为了探究输油鲁尔泵的叶轮—导流器动静干涉特征,保证其稳定运行,采用基于SST 湍流模型对鲁尔泵内部非定常流场进行数值分析,在不同流量工况下探讨了鲁尔泵内的压力分布规律和各过流部件的内部流场特性。研究结果表明:流体静压呈现从叶轮中心随叶片方向不断增大的趋势,在叶轮出口达到最大值。导流器中静压分布较为均匀,在叶片根部存在低压区,对此处的焊接结构造成了不利影响。需对导流器结构优化从而延长部件寿命。流体绝对速度从叶轮中心随流道不断提升,在叶轮出口达到最大值。在低流量工况时,叶轮中速度梯度过大,并且导流器中出现了大量湍流区域,造成了十分严重的冲击损失与水力损失,在实际工作中,工作流量的设置不应过度偏移额定流量。  相似文献   

6.
泵反转液力透平速度滑移的计算与分析   总被引:1,自引:0,他引:1  
针对离心泵反转液力透平(PAT),采用RNGk-ε湍流数值模拟分析了泵工况(正转)与透平工况(反转)的速度滑移特性,揭示了滑移系数的变化规律,提出了考虑滑移系数时计算PAT泵工况与透平工况扬程换算关系的新方法.结果表明:随着流量增加,泵工况滑移系数增大,透平工况滑移系数减小.速度滑移引起叶轮内的附加水力损失,透平工况流量大于额定流量时,其滑移系数小,叶轮内附加水力损失小,这是液力透平大流量时效率高的原因之一.采用PAT换算关系新方法计算了不同比转速下的6个PAT算例的扬程换算值,并将结果与未考虑滑移系数的方法比较,经实验验证该方法的平均误差约减小5%~20%.  相似文献   

7.
小流量工况下离心风机蜗壳内部的三维流动测量分析   总被引:6,自引:0,他引:6  
利用五孔探针对小流量工况下离心通风机大宽度矩形截面蜗壳内部的三维流动进行了详细的测量,给出了蜗壳螺旋通道部分的3-8个横截面内比较清晰的时均速度,静压和总压的分布图形,结果表明,在小流量工况下,蜗壳内部的二次旋涡在蜗舌处就开始形成,在一个横截面内,由开始有1个涡发展成2个,甚至3个涡,速度沿径向的分布与动量矩守恒规律经较明显的差别,特别是蜗舌附件区域的速度和压力分布与通常的分析有限大不同,蜗壳内的损失可初步归纳为4种;二次流损失,内泄漏损失,冲击损失和磨擦损失,在小流量工况下,二次流损失和内泄漏损失相对最为严重。  相似文献   

8.
为了研究水泵液压系统瞬态特性,建立了水泵液压系统运动物速度和泵转速的瞬态数学模型,分析了涡轮泵启动瞬态过程中0.73,0.90和1.00s三个典型时刻运动物速度与加速度、泵流量及其空化特性.数值模拟结果表明:不同NPSH工况叶片表面空泡分布规律一致,在叶片弦跨度0.7~1.0区域,空泡体积分数向轮缘方向迅速增大,在轮缘区达到最大值;在运动物出舱工况下,当装置空化余量为14.23m时,轮缘圆周面上平均空穴面积达到33%左右,空泡堵塞了叶片流道,导致泵扬程下降了约61%,满足不了水泵液压系统运动物的加速度要求.模型泵试验结果表明:水泵液压系统涡轮泵启动后,泵转速近似线性加速,泵的必需空化余量值随之迅速增大,在运动物出舱时涡轮泵转速、流量和必需空化余量均达到最大值,为了避免涡轮泵叶轮空化诱导运动物出舱失败,应规定水泵液压系统最小潜水深度.  相似文献   

9.
电潜泵的主要能量损失由水力损失引起。由于铸造工艺的限制,部分铸渣常会驻留叶轮流道造成局部阻塞,使附加水力损失加大,泵效严重降低。采用流体压力损失法研究了叶轮缺陷检测的可能性,在模拟叶轮的实际工况条件下,采用空气作为流动介质,依据附面层理论分析流道阻碍物产生的局部阻力和压力损失,通过流体压力损失法检测叶轮流道结构缺陷。理论分析和实验测量结果表明,该方法快速有效,对复杂小尺寸叶轮机械水力结构的缺陷检测具有一定的启示作用。  相似文献   

10.
电潜泵的主要能量损失由水力损失引起.由于铸造工艺的限制,部分铸渣常会驻留叶轮流道造成局部阻塞,使附加水力损失加大,泵效严重降低.采用流体压力损失法研究了叶轮缺陷检测的可能性,在模拟叶轮的实际工况条件下,采用空气作为流动介质,依据附面层理论分析流道阻碍物产生的局部阻力和压力损失,通过流体压力损失法检测叶轮流道结构缺陷.理论分析和实验测量结果表明,该方法快速有效,对复杂小尺寸叶轮机械水力结构的缺陷检测具有一定的启示作用.  相似文献   

11.
通过分析得出旋喷泵在小流量和高扬程工况下运行时,效率高于多级泵和高速泵,在研究旋喷泵集流管与叶轮匹配及集流管扩散段损失的基础上,给出了设计扩散管水力参数的公式。  相似文献   

12.
小流量工况下旋转离心叶轮内部流场PDA测量与分析   总被引:3,自引:1,他引:3  
在小流量工况下,采用PDA技术对一旋转离心叶轮内部的速度场进行了测量与分析,叶轮出口带有无叶扩压器.对流道内不同流面的数据进行了数据采集和统计.实验结果表明,在小流量工况下,沿周向叶轮内的相对速度从吸力面到压力面先减小后又增大,吸力面处的速度大于压力面;沿流动方向,因流道逐渐变宽,相对速度逐渐减小;靠近轮盖侧,流场结构复杂,在流道中部存在低速区;沿轴向,从盖侧至盘侧,相对速度逐渐增大,分布逐渐均匀;叶轮出口吸力面侧存在气流分离现象.  相似文献   

13.
为揭示离心压缩机通流与轮盘及轮盖侧迷宫密封泄漏流动之间的耦合作用机理,以某天然气管线用离心压缩机首级为研究对象,数值分析了压缩机级在不考虑密封结构模型以及考虑密封结构模型下的流场分布。结果表明:在考虑密封结构的情况下,压缩机整级的等熵效率和总压比都有所下降,且在小流量工况时下降更为明显;等厚度高低密封齿和梯形密封齿均能有效衰减泄漏气流压力能和动能,从而有效降低泄漏量;密封通道内的泄漏气流在叶轮进出口与通流区气流掺混时易造成通流分离;受轮盖密封泄漏气流的影响,在叶轮进口轮盖侧存在明显的熵增区域,使得压缩机整级性能下降。研究工作为深入了解离心压缩机密封流动结构及其对通流的影响、完善离心压缩机在实际运行状态下的气动性能预测模型奠定了坚实理论基础。  相似文献   

14.
基于改进的空化模型和SSTk-ω湍流模型,对轴流泵的流量-扬程曲线、空化特性及其诱导非定常空化压力脉动进行了数值模拟和分析.数值模拟结果表明:设计工况下的扬程、效率和必需空化余量预测误差分别为3.41%,4.10%和6.32%,获得了较高的预测精度;轴流泵叶轮空泡主要分布在叶片背面进口10%~30%区域,从轮缘到轮毂叶片空化区域逐渐减小;轴流泵叶轮出口在空化条件下的压力脉动的主频仍为叶频,谐频为叶频的倍数.叶轮出口受到叶轮外缘严重空化流的影响,在临界空化余量工况下,靠近轮缘处的空化压力脉动幅值是轮毂侧4倍左右;在导叶出口处两者差异逐渐减小,轮缘处的幅值比轮毂处仅大40%左右.随着空化余量不断降低,叶轮内空化趋于严重时,空泡发生区的压力脉动幅值显著增大;但在叶轮进口处,由于空化流向叶轮下游发展,叶轮上游流场受到空化的影响较小,在不同空化余量下压力脉动幅值变化较小.  相似文献   

15.
叶片进口安放角对液力透平性能的影响   总被引:2,自引:0,他引:2  
针对叶片进口安放角对液力透平性能影响规律认识不足的问题,架设一开式液力透平实验台,对一单级蜗壳式液力透平进行实验研究.采用结构化网格技术对该液力透平进行全流场数值计算与分析,将数值结果与实验结果相结合,验证数值计算的准确性.对不同进口安放角的叶轮进行数值研究.研究结果表明:随着叶片进口安放角的增加,液力透平小流量工况的效率有所下降,大流量工况的效率有所增加;透平的扬程和轴功率随着进口安放角的增加而增加;叶轮内部的功率损失是透平内部主要的功率损失;当叶片安放角增加时,小流量工况的功率损失有所增加,大流量工况下的功率损失有所减小;大流量工况下随着叶轮进口安放角的增加,进口液流冲角逐渐减小,因此,透平在大流量工况下功率损失减小,效率提高.  相似文献   

16.
为精确分析口环间隙泄漏特性及泄漏流动对液氧泵内流场的影响,本文基于SST k-ω湍流模型与High Resolution算法,对某涡轮氧泵进行了全尺寸整场数值模拟,研究了不同流量工况下热力学效应对液氧泵外特性、口环间隙泄漏量及空化特性的影响。研究结果表明,在额定工况点附近,Б.B.奥夫相尼科夫公式预测口环间隙泄漏特性相对准确,偏流量工况下各经验公式预测精度下降;等体积流量下,工质为液氧时泵效率较常温水介质高4%,口环间隙泄漏量大于水介质下,且泄漏量差值与流量相关;等温条件下,介质温度对口环间隙泄漏量影响较小,额定工况下高温液氧泄漏损失较大;考虑热力学效应后,泵腔口环间隙内的温升随流量减小而增大,120%~40%工况下温升约为1~3 K。液氧泵扬程与效率较等温条件结果略有升高,口环间隙进出口涡量增大、泄漏量明显减小,泄漏量减小数值与流量成反比,最大减小量为3%,同时口环间隙内空化加剧。  相似文献   

17.
余热排出泵叶轮与导叶匹配的水力性能研究   总被引:1,自引:0,他引:1  
为了分析叶轮与导叶匹配对余热排出泵水力性能的影响,根据泵的性能参数设计了两个叶轮和两个导叶组合的四种方案.通过外特性试验得到:叶轮与导叶的匹配对余热排出泵在小流量工况和大流量工况范围的性能影响较大,而对设计工况下的性能影响较小.采用ANSYS CFX 14.5软件对余热排出泵叶轮与导叶的四种匹配方案进行数值模拟并对比分析了内部流场,结果表明:在0.40~1.62倍设计工况范围内,数值计算得到的性能曲线与试验结果有较好的一致性;不同工况下,导叶和叶轮的内部速度分布相互影响.  相似文献   

18.
不同叶顶间隙对轴流泵空化性能及流场的影响   总被引:3,自引:0,他引:3  
通过对南水北调工程等比例缩放模型泵进行全流道数值分析和试验研究,对模型泵在3个典型流量工况下的空化计算进行适应性研究,探究叶轮区域的空化发展特性,并对不同叶顶间隙δ(0.5,1.5和3.0 mm)下的轴流泵空化特性进行对比分析,比较叶顶间隙大小对轴流泵空化性能和流场的影响.结果表明:随着空化数的降低,空化首先在叶片进口边间隙区附近发生,逐渐往叶片出口边扩大,同时沿径向往叶片背面扩大最终覆盖整个叶片,引起叶片出口靠近叶顶间隙10%区域的轴向速度逐渐降低;随着叶顶间隙的增大,模型泵的临界空化数增大,叶片轮缘处空化逐渐严重且由叶片前端往尾部移动,叶片出口轴向速度低速区主要集中在靠近间隙10%区域处,揭示了这一过程不同叶顶间隙轴流泵内部空化特性.  相似文献   

19.
电潜泵的主要能量损失由水力损失引起.由于铸造工艺的限制,部分铸渣常会驻留叶轮流道造成局部阻塞,使附加水力损失加大,泵效严重降低.文章中采用气体模拟方法研究了叶轮缺陷检测的可能性,在模拟叶轮的实际工况下,采用空气作为流动介质,通过流体动压力分析法检测叶轮流道结构缺陷.理论分析和实验测量表明,该方法对于流道占用比大于20%的矩形和流线型阻碍物均可实现快速有效的检测,对复杂小尺寸叶轮机械水力结构的缺陷检测具有一定的启示作用.  相似文献   

20.
为研究叶顶间隙对离心压缩机性能和流动的影响机理,提高压缩机级效率,以某离心制冷压缩机级为研究对象,通过试验与Numeca软件数值模拟相结合的方法,研究了叶顶间隙分别为0、0.15、0.3、0.45、0.6、1.2 mm时压缩机级性能的变化规律。研究结果表明:随着叶顶间隙增大,压缩机稳定运行工况范围变窄,级效率与压比下降;压缩机级性能下降程度与间隙增加量基本呈线性变化关系;叶顶间隙对压缩机性能参数的影响与流量系数的取值有一定关系,同一叶顶间隙下,流量系数越小,性能参数下降速率越快。分析了额定工况下叶顶间隙分别为0、0.3、0.6 mm时间隙泄漏流对叶轮流道的影响规律,结果发现:在叶轮流道周向截面,间隙泄漏流会在叶轮盖侧形成低速区,并沿着叶高以及盖侧横向扩散;顺着叶轮子午流道方向,间隙泄漏流会向相邻叶片的压力面扩散;随着叶顶间隙的增加,间隙泄漏流引起的低速区对叶道流场影响加剧,低速区与主流混合后向下游扩散,造成叶轮流道主流能量损失增大,叶片载荷减小,叶轮做功能力有所下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号