首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
建立了血清中双氯芬酸钠毛细管电泳高频电导分析法.对电泳介质的种类、浓度以及操作电压和进样量等影响因素进行了优化.实验采用5 mmol/L乳酸-NaOH(pH 3.8)为缓冲溶液,分离电压为22.0 kV,可在7 min内实现对双氯芬酸钠的分离检测.在最佳实验条件下,双氯芬酸钠的线性范围为1.5~220 μg/mL,检出限为0.5 μg/mL,回收率为92.0%~108%.  相似文献   

2.
益母草药材中水苏碱成分的高频电导毛细管电泳法分析   总被引:5,自引:0,他引:5  
建立了益母草药材中水苏碱含量测定的高效毛细管电泳高频电导法,以融硅毛细管(150 μm×60cm)为分离柱,H3PO4-NaH2PO4缓冲液为电泳介质(2.0 mmol/L NaH2PO4,H3PO4调pH 5.0),在12.0 kV,柱端高频电导检测了益母草药材中水苏碱的含量,重点探讨了缓冲液的种类、浓度、pH值、分离电压、进样时间、进样高度及毛细管有效长度对检测的影响;该法的线性范围为20.0~1 300 μg/mL,检出限为2.50μg/mL;结果表明该法快速,简便,结果准确,适用于益母草药材中有效成分的含量测定.  相似文献   

3.
毛细管电泳快速分析鼠药氟乙酸钠   总被引:2,自引:0,他引:2  
建立了毛细管电泳高频电导法检测鼠药氟乙酸钠的分析方法.优化了电泳分离检测条件,以2.5 mmol/L Na2B4O7 0.5 mmol/L HAc 0.1 mmol/L CTAB (φ)=5%乙醇溶液体系为分离介质,在反向电泳分离电压-16 kV时,氟乙酸钠峰形良好.该法在5~250 μg/mL范围内,线性相关系数 r 为0.998,检出限为3 μg/mL(S/N=3).不同添加浓度水平的谷粒样本,日间和日内RSD均小于5%,回收率均在95%以上,方法高效、快速、灵敏,适于法医和临床中毒急救中的鼠药的快速分析.  相似文献   

4.
建立了毛细管电泳高频电导法测定克林霉素含量的方法.考察了各种实验条件对分离和检测的影响.以2.4 mmol/L 甘氨酸 0.80mmol/L柠檬酸 4.0 mmol/L H3BO3(pH=6.5)为电泳介质,分离电压20.0 kV.在优化条件下,克林霉素的峰形良好,出峰时间快,线性范围为1.500~120.0μg/mL,检出限为0.5μg/mL.回收率达93.6%~98.9%.  相似文献   

5.
建立了一种同时测定食品中的四环素、美他环素、多西环素及氯霉素含量的胶束电动色谱法.考察了缓冲溶液的浓度、添加剂、分离电压、进样时间以及温度等条件对分离的影响,得到了最佳的分离条件,即运行缓冲溶液为70 mmol/L硼砂-20 mmol/L十二烷基硫酸钠溶液,检测波长215 nm,分离电压25 kV,分离温度15 ℃.最佳分离条件下4种抗生素在12 min内达到基线分离,且氯霉素为5.00~250.00 μg/mL,四环素、美他环素和多西环素为10.00~250.00 μg/mL时呈现良好的线性关系(相关系数大于0.991 2).该方法可用于食品中残留抗生素的检测.  相似文献   

6.
应用高效毛细管电泳法对氧化乐果的含量进行了测定,研究了检测波长、缓冲体系、缓冲液pH、缓冲液浓度、SDS浓度和分离电压对氧化乐果测定的影响.结果表明,在pH为7.5、20 mmol/L NaH2PO4-Na2HPO4缓冲液、10 mmol/L SDS、209 nm、25 kV的条件下,氧化乐果的测定效果最佳.测定氧化乐果的检测限为0.15μg/mL,线性范围为0.5~30μg/mL.采用标准加入法,测定回收率为92%~105%.该方法可成功应用于农田水样中氧化乐果含量的测定.  相似文献   

7.
采用毛细管区带电泳-电化学检测法(CE-ED)同时测定了洋葱中芥子酸、槲皮素和原儿茶酸的含量,研究了电极电位、运行液浓度和分离电压等实验参数对分离检测的影响.在优化的条件下,以直径300 μm的碳圆盘电极为工作电极,电极电位为+950 mV(vs.SCE), 在pH 9.0的40 mmol/L的硼酸运行缓冲液中,上述3组分在25 min内可完全分离.芥子酸、槲皮素和原儿茶酸的浓度分别在2.0×10-7-1.0×10-4g/mL、2.0×10-7-5.0×10-5g/mL和5.0×10 -7-5.0×10-5g/mL的范围内与峰电流呈良好线性关系,检测下限分别为1.5×10-7g/mL、1.6×10-7g/mL和3.6×10-7g/mL,7次测得的三种组分峰高的相对标准偏差分别为2.70%、4.65%和1.73%,三次测得的平均回收率分别为102.2%、105.5%和100.9% .  相似文献   

8.
高效毛细管电泳分离检测5种喹诺酮类抗生素   总被引:1,自引:0,他引:1  
采用高效毛细管电泳分离检测加替沙星、洛美沙星、依诺沙星、环丙沙星和氧氟沙星等5种喹诺酮类抗生素,探讨了电泳参数对分离结果的影响.在检测波长为268 nm时,确定最佳实验条件为:电泳缓冲液为pH值为8.8的15 mmol/L Na2B4O7-15 mmol/L KH2PO4溶液,分离电压为8 kV,高差为10 cm,进样时间为20 s.在最佳分离条件下,5种抗生素在9 min内实现基线分离,样品浓度在2×10-6~4×10-6 mmol/L之间.同时,在最佳分离条件下检测市售洛美沙星片中洛美沙星的质量分数为36%,回收率为109.4%.  相似文献   

9.
通过流动注射的方法将动态微波辅助萃取与高效液相色谱相连接, 用于测定金银花中的绿原酸. 萃取过程在一个循环体系中完成, 萃取后, 通过采样环采集到的20 μL样品被流动相载带到色谱系统进行分离检测. 在最佳实验条件下得到的检出限和测定下限分别为0.25和0.83 μg/mL, 日内和日间精密度(RSD)分别为3.4%和4.1%, 平均加标回收率为98.1%.  相似文献   

10.
目的 通过间接光度法测定连苯三酚.方法 基于连苯三酚可以被土豆中超声提取的多酚氧化酶(PPO)催化与溶解氧生成过氧化氢,且在酸性介质中,过氧化氢与KI、淀粉的显色反应,建立了间接光度法测定连苯三酚的新方法.结果 在最优条件下,连苯三酚的浓度在0.1~10 μg/mL范围内有良好的线性关系,该方法的相对标准偏差为3.59%(c=1 μg/mL,n=11),回收率为97.5%~102%,检出限为0.05 μg/mL.结论 该方法可应用于废水中低含量连苯三酚的测定.  相似文献   

11.
毛细管电泳-电导法快速高灵敏检测阳离子   总被引:1,自引:0,他引:1  
采用自行研制的毛细管电泳-电导检测系统研究常见阳离子的分离检测.在含15 mmol·L-1 Tris、 8 mmol·L-1 CHES和2 mmol·L-1 Hac(pH 8.64)的缓冲溶液中,K 、Na 、NH 4 3种离子在0.8 min内基线分离,检测限分别为0.773、0.893、0.445 μg·L-1,分析时间和检测限均优于报道的实验结果,迁移时间重现性良好(相对标准偏差sr≤3.56%,n=3×5=15),同时对实际样品中的阳离子进行了检测.  相似文献   

12.
猪内脏中盐酸克伦特罗的毛细管电泳电导检测   总被引:5,自引:0,他引:5  
建立了可用于检测猪内脏中盐酸克伦特罗含量的毛细管电泳电导检测方法 ,考察了实验参数对分离、检测的影响。采用醋酸 /醋酸氨缓冲体系为运行电泳介质 ,在最佳实验条件下 ,盐酸克伦特罗的线性范围为 1 2~ 2 0mg/L ,检测限为 0 6mg/L ,是一种较好的检测盐酸克伦特罗的方法。  相似文献   

13.
高速毛细管电泳-电导法测定茶碱的血药浓度   总被引:1,自引:0,他引:1  
高速毛细管电泳技术(HSCE)的主要特点在于通过增大分离电压和缩短毛细管,将分析速度提高到几秒至几分钟内。采用高速毛细管电泳电导法对测定茶碱的血药浓度进行研究;优化选择缓冲介质、毛细管长度和内径、分离电压等实验参数,对从不同方面来提高分析速度进行初步探讨。结果表明:茶碱在60s内可以得到较好的分离测定,线性范围为37.85—0.15μg/mL,最小检出浓度为0.08μg/mL。此法快速、简便、灵敏,耗费低廉,符合临床监测血药浓度的要求。  相似文献   

14.
结合肺癌介入动脉药液模拟实验的特点,设计了一种微控注射在线检测方法,使注射药物自动化,并能在不平衡状态下进行测定,具有分析速度快(50000次/秒),分析精度高(0.024%),耗费药液少(1.6毫升/20心动周期)等独具的优点. 该方法扩展了现有仪器的功能和使用范围,可用于大批量样品分析和在线连续检测.  相似文献   

15.
成功地运用了离子色谱电导检测法实现了对顺丁烯二酸酐恒电流合成丁二酸体系的主要物种丁二酸和顺丁烯二酸的定性和定量分析,以实现对丁二酸的电合成过程进行快捷、准确的实时分析.研究结果表明,离子色谱电导检测法对检测丁二酸和顺丁烯二酸同样具有检测灵敏、快捷和设备简便的优势,而且选择性高.研究结果还表明,表面合金/不锈钢作阴极材料电还原顺丁烯二酸酐时表现出很高的电催化活性和对产物丁二酸的选择性,在电流密度为31.1mA·cm-2的条件下,恒电流1.56h,可获得较高的电流效率和丁二酸产率.  相似文献   

16.
利用DDS-IIA型电导率仪测定了不同温度下甘氨酸在PEG400水溶液中的电导率,计算了甘氨酸的摩尔电导率.探讨了温度和溶剂浓度对甘氨酸摩尔电导率的影响.结果表明,甘氨酸的摩尔电导率随温度的升高而增大,随溶剂浓度的增大而降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号