首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kasting JF 《Nature》2004,432(7016):1 p following 460
Ohmoto et al. argue that carbon dioxide was abundant in the late Archaean and early Proterozoic atmosphere and that methane was probably scarce, based on a reanalysis of the occurrence of siderite, FeCO3, in ancient rocks. Here I consider several factors that may undermine their conclusions.  相似文献   

2.
Hessler AM  Lowe DR  Jones RL  Bird DK 《Nature》2004,428(6984):736-738
The quantification of greenhouse gases present in the Archaean atmosphere is critical for understanding the evolution of atmospheric oxygen, surface temperatures and the conditions for life on early Earth. For instance, it has been argued that small changes in the balance between two potential greenhouse gases, carbon dioxide and methane, may have dictated the feedback cycle involving organic haze production and global cooling. Climate models have focused on carbon dioxide as the greenhouse gas responsible for maintaining above-freezing surface temperatures during a time of low solar luminosity. However, the analysis of 2.75-billion-year (Gyr)-old palaeosols--soil samples preserved in the geologic record--have recently provided an upper constraint on atmospheric carbon dioxide levels well below that required in most climate models to prevent the Earth's surface from freezing. This finding prompted many to look towards methane as an additional greenhouse gas to satisfy climate models. Here we use model equilibrium reactions for weathering rinds on 3.2-Gyr-old river gravels to show that the presence of iron-rich carbonate relative to common clay minerals requires a minimum partial pressure of carbon dioxide several times higher than present-day values. Unless actual carbon dioxide levels were considerably greater than this, climate models predict that additional greenhouse gases would still need to have a role in maintaining above-freezing surface temperatures.  相似文献   

3.
Atmospheric carbon dioxide concentrations before 2.2 billion years ago   总被引:5,自引:0,他引:5  
Rye R  Kuo PH  Holland HD 《Nature》1995,378(6557):603-605
The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons.  相似文献   

4.
Several lines of evidence have recently reinforced the hypothesis that an ocean existed on early Mars. Carbonates are accordingly expected to have formed from oceanic sedimentation of carbon dioxide from the ancient martian atmosphere. But spectral imaging of the martian surface has revealed the presence of only a small amount of carbonate, widely distributed in the martian dust. Here we examine the feasibility of carbonate synthesis in ancient martian oceans using aqueous equilibrium calculations. We show that partial pressures of atmospheric carbon dioxide in the range 0.8-4 bar, in the presence of up to 13.5 mM sulphate and 0.8 mM iron in sea water, result in an acidic oceanic environment with a pH of less than 6.2. This precludes the formation of siderite, usually expected to be the first major carbonate mineral to precipitate. We conclude that extensive interaction between an atmosphere dominated by carbon dioxide and a lasting sulphate- and iron-enriched acidic ocean on early Mars is a plausible explanation for the observed absence of carbonates.  相似文献   

5.
Ohmoto H  Watanabe Y  Kumazawa K 《Nature》2004,429(6990):395-399
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.  相似文献   

6.
Som SM  Catling DC  Harnmeijer JP  Polivka PM  Buick R 《Nature》2012,484(7394):359-362
According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3?kg?m(-3), compared to today's 1.2?kg?m(-3), but because such drops rarely occur, air density was more probably below 1.3?kg?m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates.  相似文献   

7.
Sulphur isotope evidence for an oxic Archaean atmosphere   总被引:1,自引:0,他引:1  
Ohmoto H  Watanabe Y  Ikemi H  Poulson SR  Taylor BE 《Nature》2006,442(7105):908-911
The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.  相似文献   

8.
Rapid evolutionary innovation during an Archaean genetic expansion   总被引:1,自引:0,他引:1  
David LA  Alm EJ 《Nature》2011,469(7328):93-96
The natural history of Precambrian life is still unknown because of the rarity of microbial fossils and biomarkers. However, the composition of modern-day genomes may bear imprints of ancient biogeochemical events. Here we use an explicit model of macroevolution including gene birth, transfer, duplication and loss events to map the evolutionary history of 3,983 gene families across the three domains of life onto a geological timeline. Surprisingly, we find that a brief period of genetic innovation during the Archaean eon, which coincides with a rapid diversification of bacterial lineages, gave rise to 27% of major modern gene families. A functional analysis of genes born during this Archaean expansion reveals that they are likely to be involved in electron-transport and respiratory pathways. Genes arising after this expansion show increasing use of molecular oxygen (P = 3.4 × 10(-8)) and redox-sensitive transition metals and compounds, which is consistent with an increasingly oxygenating biosphere.  相似文献   

9.
Nitrogen is an essential element for life and is often the limiting nutrient for terrestrial ecosystems. As most nitrogen is locked in the kinetically stable form, N2, in the Earth's atmosphere, processes that can fix N2 into biologically available forms-such as nitrate and ammonia-control the supply of nitrogen for organisms. On the early Earth, nitrogen is thought to have been fixed abiotically, as nitric oxide formed during lightning discharge. The advent of biological nitrogen fixation suggests that at some point the demand for fixed nitrogen exceeded the supply from abiotic sources, but the timing and causes of the onset of biological nitrogen fixation remain unclear. Here we report an experimental simulation of nitrogen fixation by lightning over a range of Hadean (4.5-3.8 Gyr ago) and Archaean (3.8-2.5 Gyr ago) atmospheric compositions, from predominantly carbon dioxide to predominantly dinitrogen (but always without oxygen). We infer that, as atmospheric CO2 decreased over the Archaean period, the production of nitric oxide from lightning discharge decreased by two orders of magnitude until about 2.2 Gyr. After this time, the rise in oxygen (or methane) concentrations probably initiated other abiotic sources of nitrogen. Although the temporary reduction in nitric oxide production may have lasted for only 100 Myr or less, this was potentially long enough to cause an ecological crisis that triggered the development of biological nitrogen fixation.  相似文献   

10.
Towe KM 《Nature》1990,348(6296):54-56
The Earth's atmosphere during the Archaean era (3,800-2,500 Myr ago) is generally thought to have been anoxic, with the partial pressure of atmospheric oxygen about 10(-12) times the present value. In the absence of aerobic consumption of oxygen produced by photosynthesis in the ocean, the major sink for this oxygen would have been oxidation of dissolved Fe(II). Atmospheric oxygen would also be removed by the oxidation of biogenic methane. But even very low estimates of global primary productivity, obtained from the amounts of organic carbon preserved in Archaean rocks, seem to require the sedimentation of an unrealistically large amount of iron and the oxidation of too much methane if global anoxia was to be maintained. I therefore suggest that aerobic respiration must have developed early in the Archaean to prevent a build-up of atmospheric oxygen before the Proterozoic. An atmosphere that contained a low (0.2-0.4%) but stable proportion of oxygen is required.  相似文献   

11.
Bao H  Lyons JR  Zhou C 《Nature》2008,453(7194):504-506
Understanding the composition of the atmosphere over geological time is critical to understanding the history of the Earth system, as the atmosphere is closely linked to the lithosphere, hydrosphere and biosphere. Although much of the history of the lithosphere and hydrosphere is contained in rock and mineral records, corresponding information about the atmosphere is scarce and elusive owing to the lack of direct records. Geologists have used sedimentary minerals, fossils and geochemical models to place constraints on the concentrations of carbon dioxide, oxygen or methane in the past. Here we show that the triple oxygen isotope composition of sulphate from ancient evaporites and barites shows variable negative oxygen-17 isotope anomalies over the past 750 million years. We propose that these anomalies track those of atmospheric oxygen and in turn reflect the partial pressure of carbon dioxide (P(CO2)) in the past through a photochemical reaction network linking stratospheric ozone to carbon dioxide and to oxygen. Our results suggest that P(CO2) was much higher in the early Cambrian than in younger eras, agreeing with previous modelling results. We also find that the (17)O isotope anomalies of barites from Marinoan (approximately 635 million years ago) cap carbonates display a distinct negative spike (around -0.70 per thousand), suggesting that by the time barite was precipitating in the immediate aftermath of a Neoproterozoic global glaciation, the P(CO2) was at its highest level in the past 750 million years. Our finding is consistent with the 'snowball Earth' hypothesis and/or a massive methane release after the Marinoan glaciation.  相似文献   

12.
Ueno Y  Yamada K  Yoshida N  Maruyama S  Isozaki Y 《Nature》2006,440(7083):516-519
Methanogenic microbes may be one of the most primitive organisms, although it is uncertain when methanogens first appeared on Earth. During the Archaean era (before 2.5 Gyr ago), methanogens may have been important in regulating climate, because they could have provided sufficient amounts of the greenhouse gas methane to mitigate a severely frozen condition that could have resulted from lower solar luminosity during these times. Nevertheless, no direct geological evidence has hitherto been available in support of the existence of methanogens in the Archaean period, although circumstantial evidence is available in the form of approximately 2.8-Gyr-old carbon-isotope-depleted kerogen. Here we report crushing extraction and carbon isotope analysis of methane-bearing fluid inclusions in approximately 3.5-Gyr-old hydrothermal precipitates from Pilbara craton, Australia. Our results indicate that the extracted fluids contain microbial methane with carbon isotopic compositions of less than -56 per thousand included within original precipitates. This provides the oldest evidence of methanogen (> 3.46 Gyr ago), pre-dating previous geochemical evidence by about 700 million years.  相似文献   

13.
为观察被动吸烟对小鼠运动能力的影响,构建小鼠被动吸烟实验模型,对小鼠被动吸烟四周后的体重、力竭游泳运动时间以及血气进行检测分析。结果表明:被动吸烟导致氧饱和度(SaO2)下降、氧分压(PaO2)减少,二氧化碳分压(PaCO2)增加,血糖(Glu)下降,血乳酸(Lac)升高,体重下降,游泳时间减少,运动能力降低。从呼吸系统、心血管系统等方面,对被动吸烟影响小鼠耐力活动的可能机制进行了探讨,旨在希望通过此研究,给教练员、运动员以警示和借鉴作用。使其对运动中比较普遍的吸烟现象加以重视。  相似文献   

14.
樊亚茹  王海军  刘磊  姚远 《科学技术与工程》2021,21(27):11876-11881
多组分气体分布状态的预测和评估对于好氧通风工程的设计和运行具有重要现实意义。垃圾土中多组分气体压力和浓度的定量表征是弄清气体分布状态的基础。本文以两个典型垃圾填埋场(赤壁(A组)和北洋桥(B组))为背景,开展了注气过程中多组分气体压力和浓度的现场监测试验,提出了修正后的气体分压与各组分浓度之间的定量表征关系,对比分析了ES模型和MES模型预测各组分气体压力与浓度的可靠性。结果表明:两组试验结果各组分气体压力与浓度都符合MES模型,各组分气体压力和浓度之间都存在线性关系;结合监测数据和模型分析发现:ES模型得到的分压值高于MES模型,表明监测得到的气体压力较理想值偏低;甲烷、二氧化碳、氧气和氮气压力差值分别为:1.75~1691pa、63.77~1014.05pa、50.19~707.98pa、907.81~7158.53pa。以上结果为好氧通风过程中多组分气体分布状态的评估提供了关键理论支撑。  相似文献   

15.
R M Wells  V Tetens  T Brittain 《Nature》1983,306(5942):500-502
It is generally accepted that the sigmoidal nature of the haemoglobin-oxygen dissociation curve (ODC) is necessary for efficient oxygen transport in terrestrial vertebrates because it allows large volumes of oxygen to be bound or released for relatively small changes in the partial pressure of oxygen (PO2) in the blood. Furthermore, the amount of oxygen to tissues is increased by hydrogen ions produced from the dissociation of carbon dioxide in solution. The generality of these key features of cooperative oxygen binding and the Bohr effect holds for reptiles, birds and mammals, including representatives with special respiratory requirements for diving, burrowing and living at high altitude. Sphenodon punctatus is the sole surviving representative of the ancient order of 'beakhead' reptiles (order Rhynchocephalia) which were once widely distributed during the Triassic period before the spectacular radiation of dinosaur faunas. We have now investigated the oxygen transporting properties of blood from Sphenodon and find that the ODC is hyperbolic, with a high affinity for oxygen and very small Bohr effect. This combination of characteristics is unique among terrestrial vertebrates and accords with a low demand for oxygen and limited scope for aerobic activity.  相似文献   

16.
东北和华北太古宙地体和国外同类组合相比有特殊性,如麻粒岩多为非亏损型,仅有少量亏损型,未见熔融残留型等等。这些都表明中国前寒武纪古陆稳定与活化反复交替进行的准地台型发展历史。很可能早期地壳以垂直运动为主,下陷与抬升震荡频繁,振幅不大,因此深部下地壳岩石(残留型或亏损型麻粒岩以及堆晶相层状岩体)较少出露,上部表壳岩和BIF得以较多保存,绿岩盆地发育不好,稳定性差,变质较高,形成了以“钾质”为主,无红(风化壳型铁矿)少绿(绿岩带)、透镜状BIF广泛分布于中一高级片麻岩中的地质景观。  相似文献   

17.
Interaction between water mist and fire smoke is studied by experiments in an ISO 9705 room, The variation of 02, CO and CO2 concentration is disclosed, and the mathematical models of smoke component con- centration with water mist pressure and ventilation speed are established according to the experimental results. It is found in the experiment that the smoke component concentration will break when ventilation speed exceeds 1.5 kg/s. This paper provides necessary theory for water mist technology using in smoke restraining.  相似文献   

18.
Key steps in atmospheric evolution occurred in the Archaean. The Hadean atmosphere was created by the inorganic processes of volatile accretion from space and degassing from the interior, and then modified by chemical and photochemical processes. The air was probably initially anoxic, though there may have been a supply of oxidation power as a consequence of hydrodynamic escape to space of hydrogen from water. Early subduction may have removed CO2 and the Hadean planet may have been icy. In the Archaean, as anoxygenic and then oxygenic photosynthesis evolved, biological activity remade the atmosphere. Sedimentological evidence implies there were liquid oceans despite the faint young Sun. These oceans may have been sustained by the greenhouse warming effect of biologically-made methane. Oxygenesis in the late Archaean would have released free O2 into the water. This would have created oxic surface waters, challenging the methane greenhouse. After the Great Oxidation Event around 2.3 to 2.4 billion years ago, the atmosphere itself became oxic, perhaps triggering a glacial crisis by cutting methane-caused greenhouse warming. By the early Proterozoic, all the key biochemical processes that maintain the modern atmosphere were probably present in the microbial community.  相似文献   

19.
Evolution of the Archaean crust by delamination and shallow subduction   总被引:12,自引:0,他引:12  
Foley SF  Buhre S  Jacob DE 《Nature》2003,421(6920):249-252
The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle.The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.  相似文献   

20.
Wilson AH  Shirey SB  Carlson RW 《Nature》2003,423(6942):858-861
Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号