首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hafting T  Fyhn M  Bonnevie T  Moser MB  Moser EI 《Nature》2008,453(7199):1248-1252
Theta-phase precession in hippocampal place cells is one of the best-studied experimental models of temporal coding in the brain. Theta-phase precession is a change in spike timing in which the place cell fires at progressively earlier phases of the extracellular theta rhythm as the animal crosses the spatially restricted firing field of the neuron. Within individual theta cycles, this phase advance results in a compressed replication of the firing sequence of consecutively activated place cells along the animal's trajectory, at a timescale short enough to enable spike-time-dependent plasticity between neurons in different parts of the sequence. The neuronal circuitry required for phase precession has not yet been established. The fact that phase precession can be seen in hippocampal output stuctures such as the prefrontal cortex suggests either that efferent structures inherit the precession from the hippocampus or that it is generated locally in those structures. Here we show that phase precession is expressed independently of the hippocampus in spatially modulated grid cells in layer II of medial entorhinal cortex, one synapse upstream of the hippocampus. Phase precession is apparent in nearly all principal cells in layer II but only sparsely in layer III. The precession in layer II is not blocked by inactivation of the hippocampus, suggesting that the phase advance is generated in the grid cell network. The results point to possible mechanisms for grid formation and raise the possibility that hippocampal phase precession is inherited from entorhinal cortex.  相似文献   

2.
Mehta MR  Lee AK  Wilson MA 《Nature》2002,417(6890):741-746
In the vast majority of brain areas, the firing rates of neurons, averaged over several hundred milliseconds to several seconds, can be strongly modulated by, and provide accurate information about, properties of their inputs. This is referred to as the rate code. However, the biophysical laws of synaptic plasticity require precise timing of spikes over short timescales (<10 ms). Hence it is critical to understand the physiological mechanisms that can generate precise spike timing in vivo, and the relationship between such a temporal code and a rate code. Here we propose a mechanism by which a temporal code can be generated through an interaction between an asymmetric rate code and oscillatory inhibition. Consistent with the predictions of our model, the rate and temporal codes of hippocampal pyramidal neurons are highly correlated. Furthermore, the temporal code becomes more robust with experience. The resulting spike timing satisfies the temporal order constraints of hebbian learning. Thus, oscillations and receptive field asymmetry may have a critical role in temporal sequence learning.  相似文献   

3.
Harris KD  Csicsvari J  Hirase H  Dragoi G  Buzsáki G 《Nature》2003,424(6948):552-556
Neurons can produce action potentials with high temporal precision. A fundamental issue is whether, and how, this capability is used in information processing. According to the 'cell assembly' hypothesis, transient synchrony of anatomically distributed groups of neurons underlies processing of both external sensory input and internal cognitive mechanisms. Accordingly, neuron populations should be arranged into groups whose synchrony exceeds that predicted by common modulation by sensory input. Here we find that the spike times of hippocampal pyramidal cells can be predicted more accurately by using the spike times of simultaneously recorded neurons in addition to the animals location in space. This improvement remained when the spatial prediction was refined with a spatially dependent theta phase modulation. The time window in which spike times are best predicted from simultaneous peer activity is 10-30 ms, suggesting that cell assemblies are synchronized at this timescale. Because this temporal window matches the membrane time constant of pyramidal neurons, the period of the hippocampal gamma oscillation and the time window for synaptic plasticity, we propose that cooperative activity at this timescale is optimal for information transmission and storage in cortical circuits.  相似文献   

4.
Independent rate and temporal coding in hippocampal pyramidal cells   总被引:1,自引:0,他引:1  
Huxter J  Burgess N  O'Keefe J 《Nature》2003,425(6960):828-832
In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.  相似文献   

5.
Spike-timing-dependent synaptic modification induced by natural spike trains   总被引:22,自引:0,他引:22  
Froemke RC  Dan Y 《Nature》2002,416(6879):433-438
The strength of the connection between two neurons can be modified by activity, in a way that depends on the timing of neuronal firing on either side of the synapse. This spike-timing-dependent plasticity (STDP) has been studied by systematically varying the intervals between pre- and postsynaptic spikes. Here we studied how STDP operates in the context of more natural spike trains. We found that in visual cortical slices the contribution of each pre-/postsynaptic spike pair to synaptic modification depends not only on the interval between the pair, but also on the timing of preceding spikes. The efficacy of each spike in synaptic modification was suppressed by the preceding spike in the same neuron, occurring within several tens of milliseconds. The direction and magnitude of synaptic modifications induced by spike patterns recorded in vivo in response to natural visual stimuli were well predicted by incorporating the suppressive inter-spike interaction within each neuron. Thus, activity-induced synaptic modification depends not only on the relative spike timing between the neurons, but also on the spiking pattern within each neuron. For natural spike trains, the timing of the first spike in each burst is dominant in synaptic modification.  相似文献   

6.
de la Rocha J  Doiron B  Shea-Brown E  Josić K  Reyes A 《Nature》2007,448(7155):802-806
Populations of neurons in the retina, olfactory system, visual and somatosensory thalamus, and several cortical regions show temporal correlation between the discharge times of their action potentials (spike trains). Correlated firing has been linked to stimulus encoding, attention, stimulus discrimination, and motor behaviour. Nevertheless, the mechanisms underlying correlated spiking are poorly understood, and its coding implications are still debated. It is not clear, for instance, whether correlations between the discharges of two neurons are determined solely by the correlation between their afferent currents, or whether they also depend on the mean and variance of the input. We addressed this question by computing the spike train correlation coefficient of unconnected pairs of in vitro cortical neurons receiving correlated inputs. Notably, even when the input correlation remained fixed, the spike train output correlation increased with the firing rate, but was largely independent of spike train variability. With a combination of analytical techniques and numerical simulations using 'integrate-and-fire' neuron models we show that this relationship between output correlation and firing rate is robust to input heterogeneities. Finally, this overlooked relationship is replicated by a standard threshold-linear model, demonstrating the universality of the result. This connection between the rate and correlation of spiking activity links two fundamental features of the neural code.  相似文献   

7.
Efficient auditory coding   总被引:2,自引:0,他引:2  
Smith EC  Lewicki MS 《Nature》2006,439(7079):978-982
The auditory neural code must serve a wide range of auditory tasks that require great sensitivity in time and frequency and be effective over the diverse array of sounds present in natural acoustic environments. It has been suggested that sensory systems might have evolved highly efficient coding strategies to maximize the information conveyed to the brain while minimizing the required energy and neural resources. Here we show that, for natural sounds, the complete acoustic waveform can be represented efficiently with a nonlinear model based on a population spike code. In this model, idealized spikes encode the precise temporal positions and magnitudes of underlying acoustic features. We find that when the features are optimized for coding either natural sounds or speech, they show striking similarities to time-domain cochlear filter estimates, have a frequency-bandwidth dependence similar to that of auditory nerve fibres, and yield significantly greater coding efficiency than conventional signal representations. These results indicate that the auditory code might approach an information theoretic optimum and that the acoustic structure of speech might be adapted to the coding capacity of the mammalian auditory system.  相似文献   

8.
H L Haas  A Konnerth 《Nature》1983,302(5907):432-434
Ample evidence exists for histaminergic and noradrenergic projections to the hippocampus. Both amines exert neurotransmitter or modulator actions on principal neurones in the CA 1 and in the dentate area. A number of mechanisms have been proposed for these actions, including increased potassium conductance, increased chloride conductance and electrogenic pump stimulation, and reduction of the anomalous inward rectification. Action potentials, and particularly bursts of spikes, in CA 1 pyramidal cells, are followed by an afterhyperpolarization (AHP) which consists of two components. The late AHP depends on a calcium-activated potassium conductance gK+ (Ca2+), and has recently been shown to be increased by dopamine. We report here a rapid and reversible decrease of the late AHP component following a burst of sodium spikes or a calcium spike, during perfusion with micromolar concentrations of histamine and noradrenaline. This effect is mediated by H2 receptors and beta-receptors, respectively, and occurred in the absence of changes in the calcium spike. By such a mechanism histamine and noradrenaline can profoundly potentiate the excitatory impact of depolarizing signals.  相似文献   

9.
Stable propagation of synchronous spiking in cortical neural networks   总被引:25,自引:0,他引:25  
Diesmann M  Gewaltig MO  Aertsen A 《Nature》1999,402(6761):529-533
The classical view of neural coding has emphasized the importance of information carried by the rate at which neurons discharge action potentials. More recent proposals that information may be carried by precise spike timing have been challenged by the assumption that these neurons operate in a noisy fashion--presumably reflecting fluctuations in synaptic input and, thus, incapable of transmitting signals with millisecond fidelity. Here we show that precisely synchronized action potentials can propagate within a model of cortical network activity that recapitulates many of the features of biological systems. An attractor, yielding a stable spiking precision in the (sub)millisecond range, governs the dynamics of synchronization. Our results indicate that a combinatorial neural code, based on rapid associations of groups of neurons co-ordinating their activity at the single spike level, is possible within a cortical-like network.  相似文献   

10.
Losonczy A  Makara JK  Magee JC 《Nature》2008,452(7186):436-441
Although information storage in the central nervous system is thought to be primarily mediated by various forms of synaptic plasticity, other mechanisms, such as modifications in membrane excitability, are available. Local dendritic spikes are nonlinear voltage events that are initiated within dendritic branches by spatially clustered and temporally synchronous synaptic input. That local spikes selectively respond only to appropriately correlated input allows them to function as input feature detectors and potentially as powerful information storage mechanisms. However, it is currently unknown whether any effective form of local dendritic spike plasticity exists. Here we show that the coupling between local dendritic spikes and the soma of rat hippocampal CA1 pyramidal neurons can be modified in a branch-specific manner through an N-methyl-d-aspartate receptor (NMDAR)-dependent regulation of dendritic Kv4.2 potassium channels. These data suggest that compartmentalized changes in branch excitability could store multiple complex features of synaptic input, such as their spatio-temporal correlation. We propose that this 'branch strength potentiation' represents a previously unknown form of information storage that is distinct from that produced by changes in synaptic efficacy both at the mechanistic level and in the type of information stored.  相似文献   

11.
B V Prasad  J W Burns  E Marietta  M K Estes  W Chiu 《Nature》1990,343(6257):476-479
Three-dimensional structures of several spherical viruses have been determined by electron microscopy and X-ray crystallography. We report here the first three-dimensional structure of the complex between an intact virus and Fab fragments of a neutralizing monoclonal antibody. The antibody is against VP4, one of the two outer capsid proteins of rotaviruses. These large icosahedral viruses cause gastroenteritis in children and young animals and account for over a million human deaths annually. VP4 in these viruses has been implicated in several important functions such as cell penetration, haemagglutination, neutralization and virulence. Here we demonstrate that the surface spikes on rotavirus particles are made up of VP4. Antigenic sites are located near the distal ends of the spikes and two Fab fragments bind to each of the sixty spikes. The mass of the spike indicates that it is a dimer of VP4. The bilobed structure at the distal end of the spike may be involved in both the attachment to the cell and in viral penetration. A novel feature in the virus-Fab complex is the structural difference between the two chemically equivalent Fab fragments on each spike, which could be indicative of variations in the Fab elbow angles.  相似文献   

12.
Person AL  Raman IM 《Nature》2012,481(7382):502-505
An unusual feature of the cerebellar cortex is that its output neurons, Purkinje cells, release GABA (γ-aminobutyric acid). Their high intrinsic firing rates (50?Hz) and extensive convergence predict that their target neurons in the cerebellar nuclei would be largely inhibited unless Purkinje cells pause their spiking, yet Purkinje and nuclear neuron firing rates do not always vary inversely. One indication of how these synapses transmit information is that populations of Purkinje neurons synchronize their spikes during cerebellar behaviours. If nuclear neurons respond to Purkinje synchrony, they may encode signals from subsets of inhibitory inputs. Here we show in weanling and adult mice that nuclear neurons transmit the timing of synchronous Purkinje afferent spikes, owing to modest Purkinje-to-nuclear convergence ratios (~40:1), fast inhibitory postsynaptic current kinetics (τ(decay) = 2.5?ms) and high intrinsic firing rates (~90?Hz). In vitro, dynamically clamped asynchronous inhibitory postsynaptic potentials mimicking Purkinje afferents suppress nuclear cell spiking, whereas synchronous inhibitory postsynaptic potentials entrain nuclear cell spiking. With partial synchrony, nuclear neurons time-lock their spikes to the synchronous subpopulation of inputs, even when only 2 out of 40 afferents synchronize. In vivo, nuclear neurons reliably phase-lock to regular trains of molecular layer stimulation. Thus, cerebellar nuclear neurons can preferentially relay the spike timing of synchronized Purkinje cells to downstream premotor areas.  相似文献   

13.
用非线性动态系统的观点看待神经元的静息和周期放电现象.通过对神经元简化数学模型的理论分析,将神经元的静息态对应模型的稳定平衡态.神经元的神经可激活性对应模型参数处于分岔点附近,神经元的周期放电态对应模型在第1次Hopf分岔之后出现的极限环稳态,用模型的二次Hopf分岔后极限环消失及稳定的不动点重新出现说明神经过程中发生的过强抑制现象.  相似文献   

14.
Zhu P  Liu J  Bess J  Chertova E  Lifson JD  Grisé H  Ofek GA  Taylor KA  Roux KH 《Nature》2006,441(7095):847-852
Envelope glycoprotein (Env) spikes on AIDS retroviruses initiate infection of host cells and are therefore targets for vaccine development. Though crystal structures for partial Env subunits are known, the structure and distribution of native Env spikes on virions is obscure. We applied cryoelectron microscopy tomography to define ultrastructural details of spikes. Virions of wild-type human immunodeficiency virus 1 (HIV-1) and a mutant simian immunodeficiency virus (SIV) had approximately 14 and approximately 73 spikes per particle, respectively, with some clustering of HIV-1 spikes. Three-dimensional averaging showed that the surface glycoprotein (gp120) 'head' of each subunit of the trimeric SIV spike contains a primary mass, with two secondary lobes. The transmembrane glycoprotein 'stalk' of each trimer is composed of three independent legs that project obliquely from the trimer head, tripod-like. Reconciling available atomic structures with the three-dimensional whole spike density map yields insights into the orientation of Env spike structural elements and possible structural bases of their functions.  相似文献   

15.
The neural computations used to represent olfactory information in the brain have long been investigated. Recent studies in the insect antennal lobe suggest that precise temporal and/or spatial patterns of activity underlie the recognition and discrimination of different odours, and that these patterns may be strengthened by associative learning. It remains unknown, however, whether these activity patterns persist when odour intensity varies rapidly and unpredictably, as often occurs in nature. Here we show that with naturally intermittent odour stimulation, spike patterns recorded from moth antennal-lobe output neurons varied predictably with the fine-scale temporal dynamics and intensity of the odour. These data support the hypothesis that olfactory circuits compensate for contextual variations in the stimulus pattern with high temporal precision. The timing of output neuron activity is constantly modulated to reflect ongoing changes in stimulus intensity and dynamics that occur on a millisecond timescale.  相似文献   

16.
Use of behavioural stochastic resonance by paddle fish for feeding   总被引:8,自引:0,他引:8  
Russell DF  Wilkens LA  Moss F 《Nature》1999,402(6759):291-294
Stochastic resonance is the phenomenon whereby the addition of an optimal level of noise to a weak information-carrying input to certain nonlinear systems can enhance the information content at their outputs. Computer analysis of spike trains has been needed to reveal stochastic resonance in the responses of sensory receptors except for one study on human psychophysics. But is an animal aware of, and can it make use of, the enhanced sensory information from stochastic resonance? Here, we show that stochastic resonance enhances the normal feeding behaviour of paddlefish (Polyodon spathula), which use passive electroreceptors to detect electrical signals from planktonic prey. We demonstrate significant broadening of the spatial range for the detection of plankton when a noisy electric field of optimal amplitude is applied in the water. We also show that swarms of Daphnia plankton are a natural source of electrical noise. Our demonstration of stochastic resonance at the level of a vital animal behaviour, feeding, which has probably evolved for functional success, provides evidence that stochastic resonance in sensory nervous systems is an evolutionary adaptation.  相似文献   

17.
Kuba H  Ishii TM  Ohmori H 《Nature》2006,444(7122):1069-1072
Neurons initiate spikes in the axon initial segment or at the first node in the axon. However, it is not yet understood how the site of spike initiation affects neuronal activity and function. In nucleus laminaris of birds, neurons behave as coincidence detectors for sound source localization and encode interaural time differences (ITDs) separately at each characteristic frequency (CF). Here we show, in nucleus laminaris of the chick, that the site of spike initiation in the axon is arranged at a distance from the soma, so as to achieve the highest ITD sensitivity at each CF. Na+ channels were not found in the soma of high-CF (2.5-3.3 kHz) and middle-CF (1.0-2.5 kHz) neurons but were clustered within a short segment of the axon separated by 20-50 microm from the soma; in low-CF (0.4-1.0 kHz) neurons they were clustered in a longer stretch of the axon closer to the soma. Thus, neurons initiate spikes at a more remote site as the CF of neurons increases. Consequently, the somatic amplitudes of both orthodromic and antidromic spikes were small in high-CF and middle-CF neurons and were large in low-CF neurons. Computer simulation showed that the geometry of the initiation site was optimized to reduce the threshold of spike generation and to increase the ITD sensitivity at each CF. Especially in high-CF neurons, a distant localization of the spike initiation site improved the ITD sensitivity because of electrical isolation of the initiation site from the soma and dendrites, and because of reduction of Na+-channel inactivation by attenuating the temporal summation of synaptic potentials through the low-pass filtering along the axon.  相似文献   

18.
Smear M  Shusterman R  O'Connor R  Bozza T  Rinberg D 《Nature》2011,479(7373):397-400
Olfactory systems encode odours by which neurons respond and by when they respond. In mammals, every sniff evokes a precise, odour-specific sequence of activity across olfactory neurons. Likewise, in a variety of neural systems, ranging from sensory periphery to cognitive centres, neuronal activity is timed relative to sampling behaviour and/or internally generated oscillations. As in these neural systems, relative timing of activity may represent information in the olfactory system. However, there is no evidence that mammalian olfactory systems read such cues. To test whether mice perceive the timing of olfactory activation relative to the sniff cycle ('sniff phase'), we used optogenetics in gene-targeted mice to generate spatially constant, temporally controllable olfactory input. Here we show that mice can behaviourally report the sniff phase of optogenetically driven activation of olfactory sensory neurons. Furthermore, mice can discriminate between light-evoked inputs that are shifted in the sniff cycle by as little as 10 milliseconds, which is similar to the temporal precision of olfactory bulb odour responses. Electrophysiological recordings in the olfactory bulb of awake mice show that individual cells encode the timing of photoactivation in relation to the sniff in both the timing and the amplitude of their responses. Our work provides evidence that the mammalian olfactory system can read temporal patterns, and suggests that timing of activity relative to sampling behaviour is a potent cue that may enable accurate olfactory percepts to form quickly.  相似文献   

19.
NMDA spikes in basal dendrites of cortical pyramidal neurons   总被引:21,自引:0,他引:21  
Schiller J  Major G  Koester HJ  Schiller Y 《Nature》2000,404(6775):285-289
Basal dendrites are a major target for synaptic inputs innervating cortical pyramidal neurons. At present little is known about signal processing in these fine dendrites. Here we show that coactivation of clustered neighbouring basal inputs initiated local dendritic spikes, which resulted in a 5.9 +/- 1.5 mV (peak) and 64.4 +/- 19.8 ms (half-width) cable-filtered voltage change at the soma that amplified the somatic voltage response by 226 +/- 46%. These spikes were accompanied by large calcium transients restricted to the activated dendritic segment. In contrast to conventional sodium or calcium spikes, these spikes were mediated mostly by NMDA (N-methyl-D-aspartate) receptor channels, which contributed at least 80% of the total charge. The ionic mechanism of these NMDA spikes may allow 'dynamic spike-initiation zones', set by the spatial distribution of glutamate pre-bound to NMDA receptors, which in turn would depend on recent and ongoing activity in the cortical network. In addition, NMDA spikes may serve as a powerful mechanism for modification of the cortical network by inducing long-term strengthening of co-activated neighbouring inputs.  相似文献   

20.
Cellular networks underlying human spatial navigation   总被引:1,自引:0,他引:1  
Ekstrom AD  Kahana MJ  Caplan JB  Fields TA  Isham EA  Newman EL  Fried I 《Nature》2003,425(6954):184-188
Place cells of the rodent hippocampus constitute one of the most striking examples of a correlation between neuronal activity and complex behaviour in mammals. These cells increase their firing rates when the animal traverses specific regions of its surroundings, providing a context-dependent map of the environment. Neuroimaging studies implicate the hippocampus and the parahippocampal region in human navigation. However, these regions also respond selectively to visual stimuli. It thus remains unclear whether rodent place coding has a homologue in humans or whether human navigation is driven by a different, visually based neural mechanism. We directly recorded from 317 neurons in the human medial temporal and frontal lobes while subjects explored and navigated a virtual town. Here we present evidence for a neural code of human spatial navigation based on cells that respond at specific spatial locations and cells that respond to views of landmarks. The former are present primarily in the hippocampus, and the latter in the parahippocampal region. Cells throughout the frontal and temporal lobes responded to the subjects' navigational goals and to conjunctions of place, goal and view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号