首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《河南科学》2016,(11):1794-1796
研究了蛛网图的邻点可区别V-全染色.根据蛛网图的结构特点,利用穷染的方法,得到了蛛网图的邻点可区别V-全色数.进一步验证了图的邻点可区别V-全染色猜想.  相似文献   

2.
研究了路、圈、扇、轮的Mycielski图的邻点可区别的V-全染色.根据Mycielski图的构造特征,利用构造函数法,构造了一个从点边集V(G)∪E(G)到色集合{1,2,…,k}的函数,给出了一种染色方案,得到了路、圈、扇、轮的Mycielski图的邻点可区别的V-全色数.?更多还原  相似文献   

3.
针对随机图设计了一种启发式的邻点可区别I 全染色算法,能够求解随机图的邻点可区别I 全色数。该算法根据邻点可区别I 全染色条件,确立了3个子目标函数和1个总目标函数,利用交换规则逐步寻优,直到目标函数值满足要求时结束。给出了详细的算法设计步骤及流程,同时进行了测试和分析,测试结果表明,该算法可以得到随机图的邻点可区别I 全色数,并且算法的时间复杂度不超过O(n3)。  相似文献   

4.
在图 G 的一个正常全染色下,G 中任意一点 v 的色集合是指点 v 的色以及与 v 关联的全体边的色所构成的集合。图 G 的邻点可区别全染色就是图 G 的正常全染色且使相邻点的色集合不同,其所用最少颜色数称为图 G的邻点可区别全色数。设计了一种启发式的邻点可区别全染色算法,该算法根据邻点可区别全染色的约束规则,确定四个子目标函数和一个总目标函数,然后借助染色矩阵及色补集合逐步迭代交换,每次迭代交换后判断目标函数值,当目标函数值满足要求时染色成功。实验结果表明,该算法可以得到图的邻点可区别全色数,并且算法的时间复杂度不超过 O(n3)。  相似文献   

5.
 邻点可区别全染色是在正常全染色的定义下,使得任两相邻顶点的色集不同。设G(V,E)为一个简单图,f为G的一个k-邻点可区别全染色,若f满足||Vi∪Ei|-|Vj∪Ej||≤1(i≠j),其中,Vi∪Ei={v|f(v)=i}∪{e|f(e)=i},记C(i)=Vi∪Ei,则称f为G的k-均匀邻点可区别全染色,简记为k-EAVDTC,并称χeat(G)=min{k|G存在k-均匀邻点可区别全染色}为G的均匀邻点可区别全染色数。本文给出了路、圈、风车图K t 3、图Dm,4和齿轮图■n的均匀邻点可区别全染色,以及它们的均匀邻点可区别全色数的确切值。  相似文献   

6.
根据圈的立方图的性质,利用穷染、置换的方法,研究了立方图C3n的邻点可区别全染色及一般邻点可区别全染色.通过设计染色方案,给出了立方图C3n的邻点可区别全色数及一般邻点可区别全色数指标,且色数均可取到下界.  相似文献   

7.
直积图的邻点可区别全染色   总被引:1,自引:0,他引:1  
设G,H为简单图.给出直积图G×H的邻点可区别全色数的一个上界,得到星、轮、扇分别与m阶路、圈的直积图的邻点可区别全色数.  相似文献   

8.
图G的一个正常全染色f称为是邻点可区别的,如果G中任何相邻点及其关联边的颜色集合不同;对一个图G进行邻点可区别的正常全染色所用最少颜色数称为G的邻点可区别全色数,记为χat(G);给出了一类特殊图类的邻点可区别全色数.  相似文献   

9.
图G的一个邻点可区别的I-均匀全染色是指对图G的一个邻点可区别的I-全染色f,若f还满足任意两个色类(点和边)的颜色个数最大相差为1.对图G进行邻点可区别的I-均匀全染色所用颜色的最小数量称为图G的邻点可区别I-均匀全色数.文章通过函数构造法,研究并确定了路、圈、星、扇和轮的平方图的邻点可区别I-均匀全色数,并验证了其...  相似文献   

10.
给出了一个简单图G的k重Mycielski图Mk(G)(其中k为正整数)的邻点可区别全色数的上界,得到了圈、星、轮、扇的k重Mycielski图的邻点可区别全色数.  相似文献   

11.
利用组合分析法和构造染色的方法, 讨论 图K15-E(K3)和K17-E(K3)的邻点可区别全染色, 确定了它们的邻点可区别全色数分别为16和19.  相似文献   

12.
关于几类特殊图的Mycielski图的邻点可区别全色数   总被引:2,自引:6,他引:2  
设G是一个简单图,f是一个从V(G)∪ E(G)到{1,2,…,k}的映射.对每个v∈V(G),令Cf(v)={f(v)}∪{f(vw)|w∈V(G),vw∈E(G)}.如果f是G的正常全染色且u,v∈V(G),一旦uv∈E(G),就有Cf(u)≠Cf(v),那么称f为G的邻点可区别全染色(简称为k-AVDTC).设xat(G)=min{k|G存在k-AVDTC},则称xat(G)为G的邻点可区别全色数.给出了路、圈、完全图、完全二分图、星、扇和轮的Mycielski图的邻点可区别全色数.  相似文献   

13.
关于图K2n+1-E(2 K2)的邻点可区别全色数   总被引:1,自引:6,他引:1  
用K2n 1-E(2K2)表示2n 1阶的完全图删掉两条不相邻的边所得到的图,给出了图K2n 1-E(2K2)的邻点可区别全色数.  相似文献   

14.
两类4-正则循环图的邻点可区别全色数   总被引:4,自引:0,他引:4  
设G是阶数不小于2的连通图,则其邻点可区别全染色是指G中任意两个相邻的顶点有不同的颜色和色集合,且任意相邻的两条边及一个顶点与其关联边的颜色也不相同.给出了两类邻接矩阵的第一行分别为(0,1,0,1,0,…,0)和(0,1,0,0,1,0,…,0)的循环图的邻点可区别金色数.  相似文献   

15.
联图 Ws∨Km,n的邻点可区别全色数   总被引:1,自引:0,他引:1  
图的邻点可区别全染色(AVDTC)数为χat(G),有猜想:xat(G)≤Δ(G)+3. 联图 Ws∨Km,n的邻点可区别全色数被确定为χat(Ws∨Km,n)=Δ( Ws∨Km,n)+1或Δ(Ws∨Km,n)+2.  相似文献   

16.
给出了△(G)=5的2-连通外平面图的邻点可区别全色数.  相似文献   

17.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k)的映射f满足:对任意uυ,υw∈E(G),u≠w,有f(uv)≠f(υw);对任意uυ∈E(G),有,(u)≠,(υ),f(u)≠f(uυ),f(υ)≠f(uυ);那么称f为G的k-正常全染色,若,还满足对任意uυ∈E(G),有C(u)≠C(υ),其中C(u)={(u))∪{f(uυ)|uυ∈E(G),υ∈V(G)),那么称,为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色)为G的邻点可区别的全色数,记作xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数.  相似文献   

18.
给出了Δ(G)=5的2-连通外平面图的邻点可区别全色数.  相似文献   

19.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k}的映射f满足:对任意uv,vw∈E(G),u≠w,有f(uv)≠f(vw);对任意uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);那么称f为G的k-正常全染色,若f还满足对任意uv∈E(G),有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G),v∈V(G)},那么称f为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色}为G的邻点可区别的全色数,记作Xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数.  相似文献   

20.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的邻点可区别VE-全染色,且称最小的数k为图G的邻点可区别VE-全色数.讨论一些图的图笛卡儿积图的邻点可区别VE-全染色,得到它们的邻点可区别VE-全色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号