首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
聚苯乙烯磁性微球的制备与表征   总被引:1,自引:0,他引:1  
以表面被油酸包覆的纳米级Fe3O4为磁性载体, 苯乙烯和丙烯酸为单体, 二乙烯基苯为交联剂, 用分散聚合的方法合成了粒径分布更均匀而且具有良好超顺磁性的聚苯乙烯磁性微球, 并对这种磁性微球进行形貌、 结构和超顺磁性的表征. 结果表明, 该方法制备的磁性微球粒径分布均匀、 表面光滑, 室温下, 其比饱和磁化强度达到11.61 Am2/kg.  相似文献   

2.
应用扫描电镜研究反相胶束法合成介孔二氧化硅微球   总被引:2,自引:0,他引:2  
以十六烷基三甲基溴化胺(CTAB)为模板,采用反相胶束法合成不同粒径的二氧化硅微球,并利用扫描电镜(SEM)对所制备的微球进行表征.考察了体系中乙醇/水比例、氨水用量、CTAB用量、温度和搅拌速度这5个条件对所制备的二氧化硅微球的粒径、均一性及分散性的影响.实验结果表明:增加体系中乙醇/水的比例将减小纳米颗粒的粒径,同时显著提高纳米颗粒的均一性和分散性;随着氨水用量的增加,微球的粒径先减小后增加,适当的氨水浓度有利于制备粒径均一的微球;增加CTAB的用量,微球的粒径增加;降低反应温度有利于合成大粒径、均一性好的微球;同时,提高搅拌速度也有利于制备均一性良好的微球.  相似文献   

3.
PLLA微球的制备工艺研究   总被引:1,自引:0,他引:1  
目的采用溶剂蒸发法制备聚乳酸(PLLA)微球。方法通过正交实验设计优化PUA微球制备工艺考察了搅拌速度、PVA浓度、PLLA浓度、N2流速、针头直径对评价指标(即微球形态、粒径大小、粒径分布、分散性)的影响,确定制备不同粒径微球的最佳工艺条件。结果采扫描电子显微镜观察微球的外观形态,微球平均粒径为20um且粒径分布集中。5因素对评价指标影响的主次顺序分别为:搅拌速度、PVA浓度、N2流速、PUA浓度、针头直径。结论该经优化制备的PUA微球分散性和成球性好,为下一步栽药微球的制备提供了基础。  相似文献   

4.
采用分散聚合法以苯乙烯(St)为单体、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为分散剂、乙醇和水的混合液为分散介质合成了聚苯乙烯微球,再通过硝化反应与还原反应制成了粒径均匀,稳定性好的氨基聚苯乙烯微球.通过扫描电子显微镜、激光粒径分析仪对微球的外观形貌、单分散性分别进行表征,并用电导滴定法测定了微球表面氨基含量.结果表明,所合成的氨基聚苯乙烯微球粒径在2 μm左右,具有良好的单分散性且氨基含量较高.  相似文献   

5.
以N-异丙基丙烯酰胺(NIPAM)、苯乙烯(St)为单体采用无皂乳液聚合法制备P(NIPAM-co-St)微球。在制备过程中,综合考察了反应时间、引发剂用量、相比、搅拌速度4个因素对P(NIPAM-co-St)微球的粒径的影响。实验结果表明,增加引发剂量、延长反应时间对减小微球粒径的影响最大,而增加相比则起着相反的作用;当搅拌速度在600 r/min,引发剂量为4%,相比为2.5%,反应时间为12 h的单分散性都比较好。  相似文献   

6.
亚微米级单分散聚苯乙烯微球的制备和影响因素研究   总被引:1,自引:0,他引:1  
目的:考察合成条件对快速法合成的聚苯乙烯(PS)微球粒径和分散系数的影响。方法:在保持其它影响因素不变的前提下,分别改变温度、引发剂浓度、离子强度,采用无皂乳液聚合法制备PS微球。结果:通过扫描电镜(SEM)观测合成的PS微球的形貌,并据此测算微球粒径和分散系数。结论:温度是影响微球粒径的重要因素,在反应温度为55~80℃之间,以水为分散介质的无皂乳液聚合法可制备出单分散性很好的亚微米PS球;引发剂浓度增加,微球粒径先减小,后增大,当引发剂浓度过大时(≥9.93×10^-3mol·L^-1),分散系数变大,微球粒径不均匀;微球粒径随离子强度的增加呈增大趋势,但离子强度的增大容易导致微球粒径分布变宽。  相似文献   

7.
17β-雌二醇微球状分子印迹聚合物优化合成条件   总被引:2,自引:0,他引:2  
采用分子印迹技术,建立了微球法合成17β-雌二醇分子印迹微球聚合物的方法,通过环境扫描电镜对所合成的微球的形态进行了分析研究,得到了该分子印迹聚合物最优化的合成条件.实验所获得的微球粒径均匀,平均粒径在300~400nm之间,这比已经报道的文献关于微球粒径的记载要小很多.由于该法合成的微球状的MIP粒径均匀,分散性好,性质稳定,因此更有助于结合位点对环境内分泌干扰物17β-雌二醇的结合和释放.  相似文献   

8.
以虾壳为原料制备壳聚糖.通过反相悬浮交联法制备壳聚糖微球和头孢替唑钠载药微球.研究了醋酸浓度、壳聚糖浓度、乳化剂用量、油水比、交联密度、反应时间和搅拌速度等因素对微球平均粒径和粒径分散度的影响.  相似文献   

9.
以丙烯酸(AA)为单体,聚乙烯吡咯烷酮K-30为分散剂、偶氮二异丁腈(AIBN)为引发剂,环己烷/水混合体系为反应介质,采用分散聚合法制备聚丙烯酸(PAA)微球。研究了分散介质配比、单体浓度、搅拌速度对微球粒径和粒径分布的影响,并采用SEM、光学显微镜对微球形貌和尺寸进行表征。研究结果表明,当搅拌速度600r/ppm,环己烷/水体积比为1:1,单体浓度为25%时,可以制得球体均匀、粒径尺寸适宜的聚丙烯酸微球。  相似文献   

10.
采用单分散聚合法和种子溶胀法,在乙醇/甲醇体系中以甲基丙烯酸甲酯(MMA)为单体、偶氮二异丁腈(AIBN)为引发剂、聚乙烯吡咯烷酮(PVP)为分散剂制备聚甲基丙烯酸甲酯(PMMA)高分子微球,并以此作为后继制备三维(3D)多孔结构锂电池材料的合成模板剂.讨论两种合成方法获得微球的粒径均匀性和粒径分布,认为单分散聚合法能获得较为理想的模板剂,研究此方法中单体介质比和引发剂浓度对微球粒径和分散性的影响,得出最佳合成条件为:MMA/medium=13.8%(质量分数,全文同),AIBN=6g时,合成微球的粒径最均匀,平均为3.8μm,粒径分布为0.103 2.  相似文献   

11.
Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge and discharge tests. The results show that the synthesized TiO2 microspheres exhibit good rate and cycle performances as anode materials of lithium ion batteries. It can be found that the dandelion-like structure provides a larger specific surface area and the single-crystalline nanorod provides a stable structure and fast pathways for electron and lithium ion transport, which contribute to the rate and cycle performances of the battery.  相似文献   

12.
通过反相乳液聚合法把丙烯酰氧基荧光素(Ac-Flu)、AMPS与丙烯酰胺共聚合成了含荧光素的聚丙烯酰胺荧光微球P(AM-AMPS-RhB)。采用了红外(FT-IR)、荧光显微镜对荧光微球进行了结构表征,采用称重法研究了矿化度、温度对微球溶胀性能的影响,同时采用荧光光谱探讨了pH,离子种类对荧光微球的荧光强度的影响。结果表明,在1 g/L NaCl水中的膨胀倍数可达17倍,在pH为3.0~10.0的水溶液中荧光性能稳定,可作为潜在的油田封堵剂。  相似文献   

13.
李蕾 《科学技术与工程》2013,13(17):4793-4796,4818
实验用弹性微球体系粒径在10~60μm范围内,采用反相(微)悬浮聚合技术,以油类为分散介质,单体溶液作为分散相,以小液滴状悬浮分散在油中,单体在小液滴内引发聚合,从而合成弹性微球。采用填砂管岩心流动实验,通过并列的两根岩心管模拟相对高渗透层与低渗透层,注入弹性微球溶液进行调剖,记录两根不同渗透率填砂管的分流量及并联两管的注入压力,探讨弹性微球体系调整油层分流能力;并调节微球浓度,探索不同浓度对调整分流量效果的影响。结果表明:弹性微球体系可以选择性封堵高渗透层,并能改善非均质地层的注水剖面;将高、低渗透率填砂管的分流量从高于80%:20%的比例调整到两者都趋于50%,并且调剖后两管的渗透率级差最大幅度从8降到1.35,调整油层分流能力效果显著,后续注水时仍能维持较高的注入压力。随着微球浓度的增大,调剖平衡时间大幅度下降,提高了作业效率。  相似文献   

14.
采用化学共沉淀法制备了纳米磁性Fe3O4粒子,并用硅烷偶联剂对其进行表面修饰。以Fe3O4作为磁性内核,以戊二醛作为交联剂,采用反相悬浮交联法制备了Fe3O4-阴离子瓜尔胶磁性微球,并用红外光谱、扫描电镜和磁学性质测量系统对样品进行了表征。通过对阿司匹林模型药物的负载实验,发现修饰后的Fe3O4-阴离子瓜尔胶磁性微球具有较好的载药性。  相似文献   

15.
聚苯乙烯-丙烯酸磁性高分子微球的制备   总被引:1,自引:0,他引:1  
磁性高分子微球兼具高分子微球的表面功能性和磁响应性,是一种新型生物高分子材料,在生物分离工程和生物医学工程中展现出独特的优势。聚苯乙烯-丙烯酸磁性高分子微球采用分散聚合法,以Fe3O4磁流体为磁核,苯乙烯-丙烯酸共聚物为高分子壳层,制备复合微球。通过形貌和粒径、分子量及固含量的分析,结果表明微球尺寸较小、粒径分布窄、化学稳定性好、表面含有丰富的功能基团,提高了磁性微球的极性。  相似文献   

16.
以ZnCl2和Na2 S2 O3为前驱物在二氯苯/水溶液界面上,在超重力为1000/g的条件下水热合成了高密度的ZnS 纳米陶瓷微球,研究了前驱物浓度、温度和超重力大小对ZnS 纳米陶瓷微球性能的影响。采用FE-SEM,TEM, XRD,FT-IR, UV-Vis和BET对样品的形貌、微结构、物相和性能进行表征。结果发现,ZnS纳米陶瓷微球是由尺寸为2-20 nm的ZnS晶粒组成的直径为300-500 nm的微球,其密度与施加的超重力大小有关。随着超重力的增大,晶粒粒度减小,制得的ZnS纳米陶瓷微球的密度就增大。在120℃,1000/g超重力的条件下,在二氯苯/水溶液界面上反应30 min制备得到的ZnS纳米陶瓷微球具有高分散性和较高的密度。  相似文献   

17.
利用传统的共沉淀法合成纳米级磁性Fe3O4,并用油酸和十二烷基磺酸钠双层表面活性剂对其进行改性,制备出稳定性好,能够很好的分散到极性溶剂中的磁流体。以磁流体为种子,通过乳液聚合方法以甲基丙烯酸甲酯(MMA)和三羟甲基丙烷三丙烯酸酯(TMPTA)为原料进行交联共聚得到了表面带双键的磁性微球,再利用二乙烯三胺(DETA)与磁性微球表面的双键发生迈克尔加成反应使其氨基化,最后用丙烯酸正丁酯(BA)与DETA改性磁性微球表面氨基反应得到多齿胺配体。通过FTIR对其结构进行了表征,元素分析测得其含氮量约为1.0mmol/g。进一步将此种配体与CuCl配位并多次重复应用于催化CCl4与MMA及三氯乙酸甲酯与苯乙烯(St)的原子转移自由基加成(ATRA)反应,通过气相色谱法测定了原料的转化率随时间变化。结果表明:在催化CCl4与MMA和三氯乙酸甲酯与St的ATRA反应中,此种配体至少可以重复使用5次,且第一次转化率在40h内可达到80%以上,第5次时仍可达到35%以上。  相似文献   

18.
功能性聚N-乙烯基乙酰胺接枝聚苯乙烯微球的制备   总被引:1,自引:0,他引:1  
采用链转移自由基聚合和端基置换反应的方法,合成了苯乙烯单封端聚N-乙烯基乙酰胺(PNVA)大分子单体,以此大分子单体为反应性分散稳定剂,使之与苯乙烯在乙醇/水的混合介质中进行分散共聚反应,制得表面PNVA接枝聚苯乙烯(PNVA-g-PSt)聚合物微球.利用凝胶渗透色谱、激光光散射仪和电子显微镜等对聚合物的相对分子质量、微球动力学直径及其形态进行了表征.结果表明:PNVA大分子单体浓度、苯乙烯浓度、引发剂浓度和聚合温度对微球粒径有较大的影响;溶剂组成对聚合物微球的形态有明显的影响.  相似文献   

19.
以双甲基丙烯酸乙二醇酯为交联剂,甲基丙烯酸-2-(α-溴异丁酰氧基)乙酯为功能单体,制备了粒径为18.7nm的聚甲基丙烯酸甲酯(PMMA)微球。在溴化亚铜(CuBr)/2,2′-联吡啶的催化下,以该PMMA微球作为苯乙烯原子转移自由基聚合的引发剂,成功进行了苯乙烯的接枝聚合,且聚合过程可控。  相似文献   

20.
以钛酸丁酯为反应原料、油胺为模板剂,采用溶剂热法制备了TiO2空心微球.通过XRD、SEM、TEM、HR-TEM、N2吸附-脱附实验及FT-IR对其晶体结构、形貌、表面性质及比表面积进行了表征.在模拟太阳光下研究了TiO2对罗丹明B的光催化降解活性,并与商品TiO2(P25)的活性相比较.结果表明,空心微球为纯相锐钛矿型TiO2,球的直径处于2-5 μm之间,构成微球的初级粒子的平均粒径为10.7 nm,BET比表面积为42.95 m2/g.所制备的TiO2空心微球在2h内对罗丹明B溶液的光降解率达72%.因粒径较大而使其不易团聚,且极易回收,有利于实际应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号