首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用Gleeble3500试验机研究汽车用C-Mn-Al系TRIP钢的高温力学性能,测定了零塑性温度和零强度温度,应用差示扫描量热法测定其相变区间,采用扫描电镜和光学显微镜分析了不同拉伸温度对应的断口宏观形貌及断口附近组织组成.该钢种零塑性温度和零强度温度分别为1425℃和1430℃,第Ⅰ脆性区间为1400℃~熔点,第Ⅲ脆性区间为800~925℃.第Ⅲ脆性区脆化的原因是α铁素体从γ晶界析出,试样从975℃冷却至700℃过程中,随着α铁素体析出比例的增大,断面收缩率先减小后增大.基体α铁素体比例为8.1%时(850℃),断面收缩率降至28.9%;而拉伸温度在800℃以下时,基体α铁素体比例超过16.7%,断面收缩率回升至38.5%以上.该钢种在1275.6℃时开始析出少量粗大的AlN颗粒,但对钢的热塑性没有影响.  相似文献   

2.
AZ31镁合金的超塑性研究   总被引:4,自引:1,他引:3  
在温度为400~440℃、应变速率为10-2~10-4 s-1的范围内研究AZ31镁合金的超塑性.结果表明,当应变速率不小于5×10-3 s-1时,AZ31镁合金的超塑性伸长率随着温度的升高而增大.对应变速率敏感指数和拉伸试样的宏观断裂特征分析表明,应变速率敏感指数是影响超塑性的主要因素.当应变速率不大于5×10-4 s-1时,AZ31镁合金在420℃时具有最大伸长率.对断裂试样的颈缩现象和断口空洞的SEM分析表明,空洞是影响超塑性的主要因素.  相似文献   

3.
采用Gleeble 3500热模拟试验机对焊接气瓶钢HP295的高温热塑性能进行测试,利用OM、SEM、EDS对实验钢热变形后的微观组织、断口形貌及微区成分进行表征,并对断裂类型及影响因素进行分析。结果表明,在500~1100℃的温度范围内,实验钢的断面收缩率R_A均超过了77%,整体表现出了良好的高温塑性;实验钢的热塑性曲线在700~900℃之间出现了一个"塑性凹槽",在800℃时试样的断面收缩率达到极小值77.98%,故实际生产中应避开这一温度范围,在铸坯表面温度高于900℃时进行矫直。HP295钢在900℃以上的高温塑性区,表现为穿晶韧性断裂;在800℃塑性极小值时,铁素体在奥氏体晶界的析出降低了实验钢的塑性,表现为沿晶韧性断裂。  相似文献   

4.
采用Gleeble-1500热模拟试验机,对第三代汽车钢(TG钢)在不同的变形温度下进行了热拉伸试验,研究其热塑性的变化.运用光学显微镜和扫描电镜分析了实验钢热变形的断口形貌及断裂机理.发现实验钢的强度随温度的升高而降低,热塑性曲线分为第Ⅰ脆性区、高温塑性区和第Ⅲ脆性区三个区域,其中第Ⅲ脆性区存在两个塑性极小值.在1300~800℃时实验钢的组织为奥氏体,断裂方式为连孔延性断裂,动态再结晶使韧窝分离前发生了较大的塑性变形,断口为大而深的韧窝;750℃时实验钢沿奥氏体晶界析出铁素体,断裂方式为界面断裂,断口既存在着铁素体内聚失效形成的小的孔洞,也存在由于裂纹沿奥氏体晶界扩展形成的石块状形貌;650℃由于出现了铁素体的准解理,实验钢的塑性下降,热塑性曲线再次出现极小值.  相似文献   

5.
采用Gleeble-1500热模拟试验机,对第三代汽车钢(TG钢)在不同的变形温度下进行了热拉伸试验,研究其热塑性的变化运用光学显微镜和扫描电镜分析了实验钢热变形的断口形貌及断裂机理.发现实验钢的强度随温度的升高而降低,热塑性曲线分为第Ⅰ脆性区、高温塑性区和第Ⅲ脆性区三个区域,其中第Ⅲ脆性区存在两个塑性极小值.在1300~800℃时实验钢的组织为奥氏体,断裂方式为连孔延性断裂,动态再结晶使韧窝分离前发生了较大的塑性变形,断口为大而深的韧窝;750℃时实验钢沿奥氏体晶界析出铁素体,断裂方式为界面断裂,断口既存在着铁素体内聚失效形成的小的孔洞,也存在由于裂纹沿奥氏体晶界扩展形成的石块状形貌;650℃由于出现了铁素体的准解理,实验钢的塑性下降,热塑性曲线再次出现极小值.  相似文献   

6.
研究间断变形工艺对AZ31镁合金超塑性的影响.结果表明,当温度为400~440℃、应变速率小于5×10-4 s-1时,间断变形工艺可以显著提高AZ31镁合金的超塑性.计算了空洞体积分数与空洞数量的关系.结果表明,空洞体积分数与空洞数量呈正比.对拉伸试样断口形貌的分析表明,间断变形减少了空洞数量,因而减小了空洞体积分数,提高了超塑性伸长率.  相似文献   

7.
研究了铸轧AZ31镁合金的高温拉伸性能和变形机制.在300~450℃条件下,分别以恒定拉伸速率10-3s-1和10-2 s-1进行拉伸至失效试验,在真实应变率为2×10-4~2×10-2 s-1的范围内进行变应变率拉伸试验.当拉伸速率为10-2s-1时,试样在400℃和450℃的延伸率均超过100%;当拉伸速率为10-3 s-1时,试样在400℃和450℃的延伸率均超过200%,该条件下的应力指数n≈3,蠕变激活能Q=148.77 kJ·mol-1,变形机制为溶质牵制位错蠕变和晶界滑移的协调机制.通过光学金相显微镜和扫描电子显微镜观察显示试样断口处存在由于发生动态再结晶和晶粒长大而形成的粗大晶粒,断裂形式为空洞长大并连接导致的韧性断裂.  相似文献   

8.
借助扫描电子显微镜、透射电子显微镜以及高温、室温拉伸和硬度测试研究了实验室研发的改进310奥氏体不锈钢在700℃长期时效后的组织与性能.700℃时效1000 h后,实验钢在晶界和晶内析出了大量(Cr,Fe,Mo)23C6、(Cr,Fe)23C6、σ相和少量的χ相.析出相对实验钢的室温力学性能有明显的强化作用.强度增加,硬度升高20 Hv,同时延伸率仍保持在30%以上.高温下,析出强化效应减弱,延伸率轻微下降.通过断口表面和剖面观察发现,时效1000 h后,实验钢的高温拉伸断口为韧性断裂,未观察到裂纹和孔洞;而室温拉伸断口为脆性断裂,断口附近则观察到σ相中出现裂纹和孔洞.从σ相的脆-韧转变和实验钢基体的室温和高温强度的不同,讨论了在室温拉伸过程中产生裂纹和孔洞的原因,以及时效对室温和高温力学行为的不同影响.  相似文献   

9.
通过高温拉伸实验研究超高强度钢BR1500HS不同变形参数对真应力-真应变曲线及抗拉强度的影响,并采用光学显微镜观察不同变形参数下的微观结构,利用扫描电子显微镜SEM分析所得材料的断口形貌。研究结果表明:不同变形参数对抗拉强度、流变应力的影响规律不同,增大变形温度或减小应变速率均可减小材料流变应力;当变形温度在800~900℃时,其材料流变抗力小、塑性好,有利于成形;在相同应变速率条件下,当变形温度区间为300~400℃,500~700℃以及800℃以上时,其微观结构组织分别主要为马氏体、贝氏体以及奥氏体;在相同应变速率下,当变形温度区间为300~400℃和500~900℃时,其断裂方式分别为脆性断裂、韧性断裂,且在800~900℃时,其韧窝断口形貌较好。  相似文献   

10.
为改善5083铝合金的力学性能,先后对其进行一道次等通道转角挤压处理及再结晶退火处理,再进行拉伸实验,分析变形温度、变形速率对合金伸长率和抗拉强度的影响,并观察合金的断口形貌.结果表明,在拉伸温度为100℃,应变速率为6.67×10-4 s-1时,合金的抗拉强度最高,达到319.7 MPa;当拉伸温度为300℃,应变速率为1.67×10-4 s-1时,合金的伸长率最大,达到75.8%.在拉伸变形过程中,合金出现应变硬化和应变软化现象,并且伴随有锯齿形流变现象.拉伸试样的断裂形式宏观表现为韧性断裂,微观形式为穿晶断裂,断口形貌由韧窝组成.随着变形温度的升高,韧窝的数量增多,尺寸变大,分布变均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号