首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
活性炭储氢系统充放气过程试验研究   总被引:1,自引:0,他引:1  
为量化分析充放气压力和充放气流率对活性炭储氢系统充放气过程热效应的影响,选择比表面积为1 800 m2·g-1的椰壳活性炭SAC-01作吸附剂、容积为540 mL的钢制压力容器为储存容器,在室温、4个压力(10.5 MPa、8 MPa、6 MPa、4 MPa)下,对容器进行氢的快速充放和通过质量流量控制器(MFC)设定...  相似文献   

2.
为强化改性椰壳活性炭的传热传质性能,采用浸渍法制得H_3PO_4改性椰壳活性炭,并以此为载体,分别选用不同比例的铜粉和膨胀石墨制得复合吸附剂并测定了复合吸附剂的甲醇吸附容量曲线和解吸过程中的复合吸附剂温度变化曲线.实验结果表明,铜粉的添加强化了复合吸附剂的传热性能,但降低了复合吸附剂的传质性能和饱和吸附容量;而具有多孔特性和较高传热系数的膨胀石墨添加到H_3PO_4改性椰壳活性炭中制成的复合吸附剂,其传热传质性能均得到了强化,且膨胀石墨添加量为20%时,更有利于复合吸附剂的传热传质性能强化,适宜太阳能吸附制冷用改性椰壳活性炭的传热传质性能强化.  相似文献   

3.
为研制氨吸附制冷用活性炭-膨胀石墨的混合吸附剂,选用椰壳活性炭和可膨胀石墨,初步分析了氨在膨胀石墨添加比率为50%的混合吸附剂上的吸附平衡.吸附剂试样首先经由77 K液氮在其上吸附数据的结构表征,然后应用根据容积法原理建立的吸附平衡测试装置,在温度293.15~303.15 K、压力0~1 MPa,测试了氨在试样上的吸附平衡数据,并通过等量吸附线标绘和Dubinin-Astakhov方程的模型分析,研究了氨在混合吸附剂上的吸附平衡.结果表明,添加膨胀石墨减小了混合吸附剂的比表面积和微孔容积,Dubinin-Astakhov方程在平衡压力较高区域的预测精度可达到4%,氨在混合吸附剂上的等量吸附热为16.94~27.78 kJ/mol.添加膨胀石墨必须兼顾混合吸附剂的吸附容量和传热传质性能.  相似文献   

4.
为推进真空绝热板(VIPs)在船舶冷藏集装箱中的应用,以多孔介质与VIPs内气体混合物之间的吸附机制研制吸气剂。根据船用玻璃纤维芯材VIPs内主要混合物(水蒸气、乙烯、丙烯和氢气)的吸附特点,选择比表面积约1 900 m~2/g的椰壳活性炭SAC-02和膨胀石墨,应用溶液浸渍法,由丙酮和硝酸镍对活性炭进行表面担载金属改性,并通过正交实验设计,确定导热系数最小时的活性炭/膨胀石墨复合吸气剂制备方案。结果表明,最佳制备方案为:可膨胀石墨的膨胀温度为800℃;膨胀时间为50 s;活性炭与膨胀石墨质量混合比为1∶4;成型压力9 MPa。在0℃、0~500 Pa压力范围内,与当前在用的吸气剂JMU-01相比,由最佳方案制备的吸气剂JMU-02至少可获得11. 47%乙烯、10. 65%丙烯和3. 87%氢气的总吸附量增量。基于碳基材料的船用玻璃纤维芯材VIPs吸气剂具有良好应用前景。  相似文献   

5.
选用氧化插层法制备的膨胀石墨为吸附剂。研究膨胀体积对膨胀石墨吸附柴油饱和吸附量的影响。考察膨胀石墨对含油废水动态吸附性能。结果表明,膨胀石墨的膨胀体积越大,其对柴油的饱和吸附量越大,饱和吸附量最大可达54g/g,而活性炭的饱和吸附量仅为4g/g。填充密度为9g/L时,膨胀石墨对含油废水的动态吸附性能较好。膨胀石墨的膨胀体积越大,其对含油废水效果越好。膨胀体积为380 mL/g和100mL/g的膨胀石墨吸附含油废水后其COD由87分别降至53和74,而活性炭仅降为83。  相似文献   

6.
先以天然鳞片石墨为原料,硝酸与磷酸为插层剂,高锰酸钾为氧化剂制备膨胀石墨,再与壳聚糖按一定的配比制备壳聚糖/膨胀石墨复合吸附剂;利用Fourier变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)对壳聚糖/膨胀石墨进行表征;以壳聚糖/膨胀石墨为吸附剂,对刚果红废水进行吸附,考察壳聚糖/膨胀石墨的配比、吸附剂用量、刚果红质量浓度、吸附时间对吸附效果的影响. 实验结果表明:壳聚糖已与膨胀石墨成功结合;当m(膨胀石墨)∶m(壳聚糖)= 3∶1、吸附剂用量为1.75 g/L、刚果红质量浓度为250 mg/L、在室温下吸附40 min时,吸附效果最好;吸附过程更符合Lagergren准二级动力学方程;实验数据与Langmuir等温吸附模型拟合度更好,壳聚糖/膨胀石墨对刚果红的吸附过程为单分子层吸附.  相似文献   

7.
先以天然鳞片石墨为原料,硝酸与磷酸为插层剂,高锰酸钾为氧化剂制备膨胀石墨,再与壳聚糖按一定的配比制备壳聚糖/膨胀石墨复合吸附剂;利用Fourier变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、X射线衍射(XRD)对壳聚糖/膨胀石墨进行表征;以壳聚糖/膨胀石墨为吸附剂,对刚果红废水进行吸附,考察壳聚糖/膨胀石墨的配比、吸附剂用量、刚果红质量浓度、吸附时间对吸附效果的影响. 实验结果表明:壳聚糖已与膨胀石墨成功结合;当m(膨胀石墨)∶m(壳聚糖)= 3∶1、吸附剂用量为1.75 g/L、刚果红质量浓度为250 mg/L、在室温下吸附40 min时,吸附效果最好;吸附过程更符合Lagergren准二级动力学方程;实验数据与Langmuir等温吸附模型拟合度更好,壳聚糖/膨胀石墨对刚果红的吸附过程为单分子层吸附.  相似文献   

8.
氯化钙/膨胀石墨混合吸附剂的吸附特性   总被引:2,自引:0,他引:2  
将氯化钙与膨胀石墨相混合,利用膨胀石墨丰富的微孔来强化氯化钙的传质,可解决化学吸附剂吸附过程中由于结块现象而导致的性能衰减现象.氯化钙/膨胀石墨固化后可以提高吸附剂的体积制冷量,从而提高吸附制冷系统的制冷性能.对4种不同组分的氯化钙/膨胀石墨混合吸附剂的吸附性能进行测试,当蒸发温度为-10℃时,固化混合吸附剂的体积制冷量比氯化钙高45%.  相似文献   

9.
以鳞片石墨为原材料制备了膨胀体积为250mL/g的膨胀石墨,表征了膨胀石墨的形貌和结构.在探讨膨胀石墨用量、吸附时间、吸附温度对处理效率影响的基础上,建立了以膨胀石墨为吸附剂的处理煤焦油为原料生产药物中间体的化工厂废水的方法.在最佳吸附条件下,探讨了过氧化氢用量对处理效率的影响,建立了以膨胀石墨为吸附剂和过氧化氢为氧化剂的处理该类废水的吸附和氧化相结合的新方法.结果显示:当膨胀石墨用量0.10 g,吸附时间20min,吸附温度20~40℃,过氧化氢用量0.60mL时,一次性处理30mL废水的处理效率可达50.0%.  相似文献   

10.
膨胀石墨与活性炭对几种工业油吸附性研究   总被引:1,自引:0,他引:1  
采用天然鳞片石墨经化学氧化、有机化合物插层,水洗,干燥,高温膨化的方法,制备了不同膨胀体积的膨胀石墨,以膨胀石墨和活性炭为吸附剂,工业油为吸附质,对比了膨胀石墨与活性炭对工业油的吸附能力.用重量法测定了两种吸附剂对吸附质的吸附量和滞留吸附量,并比较了两种吸附荆对吸附质的吸附量和滞留吸附量.实验结果表明膨胀石墨对实验油品的吸附量比活性炭的吸附量高13~23倍,膨胀石墨比活性炭的滞留吸附量大.膨胀石墨的膨胀体积越大,吸附性能越强.并用SEM对膨胀石墨的形貌进行了表征,探讨了膨胀石墨的吸附机理.  相似文献   

11.
为研究膨胀石墨对大豆油的吸附性能,采用化学氧化法制备膨胀石墨,分析膨胀石墨的微观结构和形貌.SEM结果显示,所制备的膨胀石墨具有蠕虫状的结构,并且疏松多孔.XRD结果表明,在2θ为26.3°和54.8°处分别有衍射峰,对应碳的(006)和(0012)晶面.以膨胀体积为203 mL/g的膨胀石墨为吸附剂,以大豆油为样品油,研究膨胀石墨对大豆油的吸附性能.结果表明:吸附时间,温度和pH对膨胀石墨的吸附效果影响较大,当吸附时间为2h,温度为15℃,pH为10时,可以得到最佳吸附性能.  相似文献   

12.
天然气脱附过程的热效应严重影响了天然气的脱附量,是吸附储存天然气汽车走向应用的一大障碍。为了减小热效应的影响,提出用发动机烟气加热储罐促进脱附,本文建立了车用天然气储罐脱附过程的数学模型并用Newton—Raphson方法进行求解,以车速100km/h,储罐放气速率1.315g/s为条件进行计算,得到以下结论:储罐轴心处温度最低,可达244.01K,温降49.14%,系统平均温降15.81℃,放气量3.182kg,放气效率87.85%,与传统脱附相比,放气效率提高了12.34%。通过改变吸附剂的导热系数可以改变储罐内部的温度和放气量。当导热系数从0.2增加到1.0,系统平均温降20.1oC,放气量3.2065kg,放气效率提高到88.53%。  相似文献   

13.
活性炭/膨胀石墨固化混合吸附剂导热和渗透性能测试   总被引:1,自引:0,他引:1  
为了提高活性炭吸附剂的传热性能,同时不影响其传质特性,选择6种不同粒径的活性炭吸附剂,并按5种比例制备了活性炭/膨胀石墨固化混合吸附剂,采用稳态法,对样品进行了导热系数、渗透率的性能测试.研究表明:在600 kg/m3的密度下,不同粒径活性炭吸附剂导热系数基本维持在0.36 W/(m·K)的恒定值,渗透率随着粒径的增大而增大;活性炭/膨胀石墨固化混合吸附剂的导热系数最高可达2.61 W/(m·K);随着活性炭比例的升高,导热系数逐渐减小,渗透率逐渐增大;当活性炭比例达到最大的71.4 %(2.5∶1.0)时,导热系数为2.08 W/(m·K)、渗透率为51.6 μm2,相比颗粒状活性炭,其导热系数提高了5.6倍.  相似文献   

14.
车用吸附天然气储罐在脱附放气过程中产生的热效应,严重影响了储罐的脱附效率和汽车行驶速度.建立了天然气、活性炭吸附剂和天然气储罐的热质交换模型,模拟计算了脱附过程中储罐内温度、压力和脱附量的变化,分析了温度、压力等热力参数对脱附速度和脱附量的影响.计算结果表明:储罐的自然脱附过程是吸热过程,在脱附过程中,储罐内的平均温度由293.15K降到了250.46K;储罐中心处温降最大,由293.15K降至244K,降幅达到了49.15K;自然对流下的脱附效率比等温脱附降低了24.49%;在自然对流条件下,壁面所提供的热量越少,脱附速度越小,脱附效率也就越低.  相似文献   

15.
小质量复合吸附剂氯化钙和膨胀石墨吸附性能试验   总被引:1,自引:0,他引:1  
通过搭建小质量的化学吸附试验台,采用容积法,研究了在约束体积为7.4 L条件下复合吸附剂的吸附性能.结果表明,解吸过程中,当吸附床温度为70 ℃时,CaCl2·8NH3完全转化为CaCl2·4NH2,吸附床温度为80℃时,CaCl2·4NH3开始向CaCl2·2NH3转化,并在90℃转化完全;同时,通过对CaCl2·8NH3和CaCl2·4NH2,以及两者同时解吸时解吸速度的试验和数值预测发现:相同解吸温度下,CaCl2·8NH3的平均解吸速度是CaCl2·4NH3的2.0~3.7倍,两者同时解吸时的解吸速度小于两者单独解吸时的解吸速度之和;约束压力每提高0.05 MPa,吸附剂在吸附过程中的平均吸附速度和总吸附量提高不大,约1.1倍.但是,氨的循环量相等为0.35 g/g,约束压力为0.7、0.5 MPa时,所需时间分别为2.5、10.1 min.因此,约束压力的提高可以有效地缩短循环时间,从而达到提高系统性能的目的.  相似文献   

16.
以膨胀石墨和活性炭为吸附剂,汽油为吸附质,设计吸油实验,让吸附质通过装有吸附剂的吸附管柱,测定膨胀石墨的吸附性能及其再生处理方法对吸附性能的影响.实验结果表明:吸附重量比与石墨目数的关系是膨胀石墨的石墨目数越大,对油的吸附性能越强;吸附量与汽油辛烷值之间的关系是辛烷值越小,其吸油量越大;膨胀石墨再生处理方法中,真空抽滤法是一种经济、安全、有效的再生方法,可以用于油的回收及膨胀石墨的再生利用;膨胀石墨的吸油量比活性炭的吸附量高13倍左右.  相似文献   

17.
研究膨胀石墨对染料溶液和油类的吸附效果,并与活性炭的吸附效果进行对比,探讨膨胀石墨的吸附机理.结果表明:膨胀石墨(180 mL/g)吸附染料溶液的平衡吸附量比活性炭大,吸附速度比活性炭快,它对亚甲基蓝的吸附速度是活性炭吸附速度的7.5倍;膨胀石墨对食用油、机油、柴油的吸油率分别为30.52%、17.37%和9.20%,活性炭对三种油品的吸油率分别为0.62%、0.45%和0.10%,膨胀石墨吸附食用油的吸油率是活性炭的49倍.研究证明,膨胀石墨是一种良好的吸附剂.  相似文献   

18.
以活性炭和5A分子筛为吸附剂,建立双塔吸附试验,对变压吸附法脱除甲醇裂解气中CO_CO2进行研究。测定了293 K时CO和CO2分别在活性炭和5A分子筛上的吸附等温线和动态穿透曲线,并考察了复合床的填料比和再生方法对吸附性能的影响。结果表明,所选活性炭和5A分子筛对CO和CO2具有较大的静态和动态吸附量,且利用活性炭吸附CO2,5A分子筛吸附CO时甲醇裂解气中CO2和CO吸附和脱附效果更好;复合床活性炭/5A分子筛在填料比为40/20时床层利用率和杂质吸附量最高;H2吹扫法的再生效果优于抽真空法,吹扫气量为2.92 L/min时杂质脱除率较高且H2的消耗量合理,在变压吸附中将顺放气用作吹扫,可有效降低H2的消耗。  相似文献   

19.
采用水浴加热石蜡—膨胀石墨复合相变材料热膨胀压力试验装置,测试了约束条件下纯石蜡以及膨胀石墨质量分数分别为5%和10%的石蜡—膨胀石墨复合相变材料的膨胀压力.实验表明膨胀石墨的加入明显改善了石蜡—膨胀石墨复合相变材料的导热性能,使复合相变材料中石蜡的相变提前发生.膨胀石墨质量分数为5%和10%时,相变时间范围较纯石蜡相变时间分别缩短了30%和40%.膨胀石墨质量分数为5%时,石蜡—膨胀石墨复合相变材料产生的最大膨胀压力比纯石蜡相变产生的最大膨胀压力提高了25%,最大膨胀压力可达87.3 MPa.将石蜡—膨胀石墨复合相变材料用作驱动材料是切实可行的.  相似文献   

20.
采用热排空法进行了复合吸附剂吸附脱附性能测试试验.该方法在不使用真空泵的情况下将空气排出,使得系统内空气分压力小于2 Pa,符合国家标准对测试试验的要求.通过测定13X沸石原粉和整体成型复合吸附剂的吸附脱附性能得出:其测试值与文献值偏差小于8%,脱附过程和吸附过程中吸附床温度变化速率较高,分别为6.7℃/min和-13.7℃/min;对各个复合吸附剂性能的测试和比对得到复合吸附剂E,其脱附性能较好,将复合吸附剂E应用于太阳能冷管中的制冷系数COP约为0.24~0.28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号