首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
Loh AN  Bauer JE  Druffel ER 《Nature》2004,430(7002):877-881
Seawater dissolved organic matter (DOM) is the largest reservoir of exchangeable organic carbon in the ocean, comparable in quantity to atmospheric carbon dioxide. The composition, turnover times and fate of all but a few planktonic constituents of this material are, however, largely unknown. Models of ocean carbon cycling are thus limited by the need for information on temporal scales of carbon storage in DOM subcomponents, produced via the 'biological pump', relative to their recycling by bacteria. Here we show that carbohydrate- and protein-like substances in the open Atlantic and Pacific oceans, though often significantly aged, comprise younger fractions of the DOM, whereas dissolved lipophilic material exhibits up to approximately 90 per cent fossil character. In contrast to the millennial mean ages of DOM observed throughout the water column, weighted mean turnover times of DOM in the surface ocean are only decadal in magnitude. An observed size-age continuum further demonstrates that small dissolved molecules are the most highly aged forms of organic matter, cycling much more slowly than larger, younger dissolved and particulate precursors, and directly links oceanic organic matter age and size with reactivity.  相似文献   

2.
Hopkinson CS  Vallino JJ 《Nature》2005,433(7022):142-145
Oceanic dissolved organic carbon (DOC) constitutes one of the largest pools of reduced carbon in the biosphere. Estimated DOC export from the surface ocean represents 20% of total organic carbon flux to the deep ocean, which constitutes a primary control on atmospheric carbon dioxide levels. DOC is the carbon component of dissolved organic matter (DOM) and an accurate quantification of DOM pools, fluxes and their controls is therefore critical to understanding oceanic carbon cycling. DOC export is directly coupled with dissolved organic nitrogen and phosphorus export. However, the C:N:P stoichiometry (by atoms) of DOM dynamics is poorly understood. Here we study the stoichiometry of the DOM pool and of DOM decomposition in continental shelf, continental slope and central ocean gyre environments. We find that DOM is remineralized and produced with a C:N:P stoichiometry of 199:20:1 that is substantially lower than for bulk pools (typically >775:54:1), but greater than for particulate organic matter (106:16:1--the Redfield ratio). Thus for a given mass of new N and P introduced into surface water, more DOC can be exported than would occur at the Redfield ratio. This may contribute to the excess respiration estimated to occur in the interior ocean. Our results place an explicit constraint on global carbon export and elemental balance via advective pathways.  相似文献   

3.
The formation and sinking of biogenic particles mediate vertical mass fluxes and drive elemental cycling in the ocean. Whereas marine sciences have focused primarily on particle production by phytoplankton growth, particle formation by the assembly of organic macromolecules has almost been neglected. Here we show, by means of a combined experimental and modelling study, that the formation of polysaccharide particles is an important pathway to convert dissolved into particulate organic carbon during phytoplankton blooms, and can be described in terms of aggregation kinetics. Our findings suggest that aggregation processes in the ocean cascade from the molecular scale up to the size of fast-settling particles, and give new insights into the cycling and export of biogeochemical key elements such as carbon, iron and thorium.  相似文献   

4.
Kerner M  Hohenberg H  Ertl S  Reckermann M  Spitzy A 《Nature》2003,422(6928):150-154
In aquatic systems, the concept of the 'microbial loop' is invoked to describe the conversion of dissolved organic matter to particulate organic matter by bacteria. This process mediates the transfer of energy and matter from dissolved organic matter to higher trophic levels, and therefore controls (together with primary production) the productivity of aquatic systems. Here we report experiments on laboratory incubations of sterile filtered river water in which we find that up to 25% of the dissolved organic carbon (DOC) aggregates abiotically to particles of diameter 0.4-0.8 micrometres, at rates similar to bacterial growth. Diffusion drives aggregation of low- to high-molecular-mass DOC and further to larger micelle-like microparticles. The chemical composition of these microparticles suggests their potential use as food by planktonic bacterivores. This pathway is apparent from differences in the stable carbon isotope compositions of picoplankton and the microparticles. A large fraction of dissolved organic matter might therefore be channelled through microparticles directly to higher trophic levels--bypassing the microbial loop--suggesting that current concepts of carbon conversion in aquatic systems require revision.  相似文献   

5.
Conclusions We have for the first time studied the compositions of ketone, aldehyde and alcohol lipid compounds in sinking particulate materials from Yongshu Reef lagoon and the continental shelf of the East China Sea collected by sediment trap sampling apparatus. The results indicate that sinking particulate materials contain abundant isoprenoid ketone, aldehyde and alcohol lipid compounds which take part in marine chemical cycling. The compositional features of these compounds show that sinking particulate organic matter mainly comes from autochthonous marine organisms and Yongshu Reef lagoon has more submerged macrophytes-derived component, while the continental shelf of the East China Sea contains more dinoflagellate-derived constituent. The contribution of higher land plant to sinking particulate organic matter may be very small. In contrast, it is greater in Yongshu Reef lagoon than that in the continental shelf of the East China Sea. Sinking particulate organic matter in the two regions undergoes strong biochemical transformation processes before reaching the depth of 5 m to the sea floor, and its intensity is greater in Yongshu Reef lagoon than in the continental shelf of the East China Sea. These results have certain reference value to the researches of marine chemistry, marine biology and marine sedimentology in China, and reveal the importance of organic geochemistry to the study of oceanology.  相似文献   

6.
Terminal Proterozoic reorganization of biogeochemical cycles   总被引:7,自引:0,他引:7  
Logan GA  Hayes JM  Hieshima GB  Summons RE 《Nature》1995,376(6535):53-56
The Proterozoic aeon (2,500-540 million years ago) saw episodic increases in atmospheric oxygen content, the evolution of multicellular life and, at its close, an enormous radiation of animal diversity. These profound biological and environmental changes must have been linked, but the underlying mechanisms have been obscure. Here we show that hydrocarbons extracted from Proterozoic sediments in several locations worldwide are derived mainly from bacteria or other heterotrophs rather than from photosynthetic organisms. Biodegradation of algal products in sedimenting matter was therefore unusually complete, indicating that organic material was extensively reworked as it sank slowly through the water column. We propose that a significant proportion of this reworking will have been mediated by sulphate-reducing bacteria, forming sulphide. The production of sulphide and consumption of oxygen near the ocean surface will have inhibited transport of O2 to the deep ocean. We find that preservation of algal-lipid skeletons improves at the beginning of the Cambrian, reflecting the increase in transport by rapidly sinking faecal pellets. We suggest that this rapid removal of organic matter will have increased oxygenation of surface waters, leading to a descent of the O2-sulphide interface to the sea floor and to marked changes in the marine environment, ultimately contributing to the Cambrian radiation.  相似文献   

7.
Deep carbon export from a Southern Ocean iron-fertilized diatom bloom   总被引:1,自引:0,他引:1  
Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence-although each with important uncertainties-lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.  相似文献   

8.
The sinking of particulate organic matter from the euphotic zone is an important pathway for the vertical transport of many elements and organic compounds in the sea. Many natural and artificial radionuclides in surface waters are readily adsorbed onto suspended particles and are presumably scavenged and removed to depth on time scales commensurate with both particle sinking rate and retention time of the radionuclide on the particle. Previously, abyssal benthic organisms from the northeast Pacific were found to contain short-lived fission products which entered the sea surface as fallout from nuclear testing. The presence of these radionuclides at great depth could not be explained by Stokesian settling of small fallout particles and it was hypothesized that zooplankton grazing in the surface layers packaged these particle-reactive radionuclides into large, relatively dense faecal pellets which rapidly sank to depth. We report here data from a time-series sediment trap experiment and concomitant zooplankton collections which show conclusively that Chernobyl radioactivity, in particular the rare earth nuclides 141Ce and 144Ce, entering the Mediterranean as a single pulse, was rapidly removed from surface waters and transported to 200 m in a few days primarily by zooplankton grazing.  相似文献   

9.
石家庄市大气颗粒物碳组分特征分析   总被引:6,自引:0,他引:6  
于2013年春、夏、秋、冬采集石家庄市大气颗粒物样品,分析其有机碳和元素碳。结果表明,碳组分浓度季节变化明显。在颗粒物中占有较大比重;且在细粒子中累积效应明显。秋冬季存在二次有机碳污染。对8种碳组分丰度分析说明石家庄大气颗粒物中碳组分的主要来源是燃煤、机动车尾气及生物质样品燃烧。  相似文献   

10.
Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition (13C and 14C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than five years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in medium to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.  相似文献   

11.
图像的恰可察觉失真(just noticeable distortion, JND)阈值是指人眼能够察觉的最小失真, 通常被用于去除图像/视频压缩中的视觉冗余. 针对 JND 模型对颜色和结构特征利用不充分的问题, 提出了一种基于颜色复杂度和结构张量的 JND 模型. 首先, 计算图像的颜色复杂度, 将其转换为与视觉敏感度相关的权值, 和对比掩蔽模型结合以提升模型的准确性; 然后, 利用结构张量对局部特征进行表示, 建立基于局部结构特征的调制因子, 估计结构不规则区域的视觉冗余程度; 最后, 将基于颜色复杂度的 JND 模型和基于结构张量的调制因子结合, 建立基于颜色复杂度和结构张量的 JND(complexity structure tensor based JND, CSJND)模型. 实验结果表明, 相比于已有的模型, 该模型在主观感知质量相同的前提下, 能使 PSNR 值明显降低; 该模型更加符合人眼的视觉特性, 能更准确地估计出 JND 阈值.  相似文献   

12.
采用扫描电镜和能谱仪对济南市区春季大气中PM_(2.5)、PM_(10)颗粒物的显微形貌、粒径分布和化学元素进行连续30 d全天候研究,对大气颗粒物的粒径与数量进行统计回归分析,绘制相应粒径变化柱状图。依据检出的元素来推断大气颗粒物化学组成和来源,提出控制大气颗粒物PM2.5、PM10污染的有效对策。实验结果显示,大气颗粒物显微形态有球状、片状、棒状等不同形状且主要集中于0~1.0μm和1.0~2.5μm粒径范围,检出C、O、Cl、Si、Ca、K、Na、Mg、Al、Fe、S等多种化学元素,大多以矿物质氧化物、硫酸盐、硅铝酸盐等形式存在,主要来源于土壤尘、风沙尘、燃煤飞灰等。该方法简单、快速、科学,值得进一步推广应用。  相似文献   

13.
The reconstruction of pCO2 in the tropic ocean is one of the most important issues to understand global climatic changes.In this study,the high-resolution stratigraphic analysis of core 17962 was conducted,which is Iocated in the southern South China Sea(SCS).The contents of sedimentary organic matter,the stable carbon isotopic composition of sedimentary organic matter,and the δ^13C values of black carbon and terrigenons n-alkanes were determined.And the δ^13Cwc value of carbon derived from aquatic was calculated.On the basis of δ^13Corg-pCO2equation proposed by Popp et al.(1989),we estimated the pCO2 in the Nansha area,SCS,since the last glaciation using δ^13Cwc instead of δ^13Corg.The results show that the average pCO2 was estimated at 240 ppm V during the last glaciation,and at 320ppm V in the Holocene.A comparison of surface sea pCO2 with the atmosphere CO2 recorded in the Vostok ice core,indicates that CO2 in surface water of the southern SCS could emit into atmosphere during the last 30ka.  相似文献   

14.
石家庄市开放源颗粒物化学组成特征分析   总被引:5,自引:1,他引:4  
分析了石家庄市城市扬尘、道路尘、土壤尘、建筑尘四种开放源的粒径组成和无机元素含量,结果表明,四种开放源颗粒物样品中细颗粒物的累积效应更为明显。各种水溶性离子中,阴离子浓度最高的是SO42-,阳离子浓度较高的是Ca2+;存在二次有机碳污染,SOC是颗粒物的重要组成部分;各种元素的含量存在一定差异,Ca、Mg、Al、Si、Fe、K等元素含量较高,受人为污染严重。  相似文献   

15.
Disequilibria between 210Po and 210Pb in the upper water and their potential applications as a proxy of particle export and remineralization were examined in the Southern Ocean (station IV3) and the South China Sea (NS44). 210Po was deficit in surface waters but excessive relative to 210Pb in subsurface waters. Good positive correlation between 210Po and particulate organic carbon (POC) indicated deficits and excess of 210Po resulted from particulate organic matter (POM) export and remineralization respecti...  相似文献   

16.
Riebesell U  Zondervan I  Rost B  Tortell PD  Zeebe RE  Morel FM 《Nature》2000,407(6802):364-367
The formation of calcareous skeletons by marine planktonic organisms and their subsequent sinking to depth generates a continuous rain of calcium carbonate to the deep ocean and underlying sediments. This is important in regulating marine carbon cycling and ocean-atmosphere CO2 exchange. The present rise in atmospheric CO2 levels causes significant changes in surface ocean pH and carbonate chemistry. Such changes have been shown to slow down calcification in corals and coralline macroalgae, but the majority of marine calcification occurs in planktonic organisms. Here we report reduced calcite production at increased CO2 concentrations in monospecific cultures of two dominant marine calcifying phytoplankton species, the coccolithophorids Emiliania huxleyi and Gephyrocapsa oceanica. This was accompanied by an increased proportion of malformed coccoliths and incomplete coccospheres. Diminished calcification led to a reduction in the ratio of calcite precipitation to organic matter production. Similar results were obtained in incubations of natural plankton assemblages from the north Pacific ocean when exposed to experimentally elevated CO2 levels. We suggest that the progressive increase in atmospheric CO2 concentrations may therefore slow down the production of calcium carbonate in the surface ocean. As the process of calcification releases CO2 to the atmosphere, the response observed here could potentially act as a negative feedback on atmospheric CO2 levels.  相似文献   

17.
Wortmann UG  Chernyavsky BM 《Nature》2007,446(7136):654-656
The global carbon and sulphur cycles are central to our understanding of the Earth's history, because changes in the partitioning between the reduced and oxidized reservoirs of these elements are the primary control on atmospheric oxygen concentrations. In modern marine sediments, the burial rates of reduced carbon and sulphur are positively coupled, but high-resolution isotope records indicate that these rates were inversely related during the Early Cretaceous period. This inverse relationship is difficult to reconcile with our understanding of the processes that control organic matter remineralization and pyrite burial. Here we show that the inverse correlation can be explained by the deposition of evaporites during the opening of the South Atlantic Ocean basin. Evaporite deposition can alter the chemical composition of sea water, which can in turn affect the ability of sulphate-reducing bacteria to remineralize organic matter and mediate pyrite burial. We use a reaction-transport model to quantify these effects, and the resulting changes in the burial rates of carbon and sulphur, during the Early Cretaceous period. Our results indicate that deposition of the South Atlantic evaporites removed enough sulphate from the ocean temporarily to reduce biologically mediated pyrite burial and organic matter remineralization by up to fifty per cent, thus explaining the inverse relationship between the burial rates of reduced carbon and sulphur during this interval. Furthermore, our findings suggest that the effect of changing seawater sulphate concentrations on the marine subsurface biosphere may be the key to understanding other large-scale perturbations of the global carbon and sulphur cycles.  相似文献   

18.
控制混凝条件对天然有机物指标的去除影响   总被引:2,自引:0,他引:2  
天然有机物的组成较为复杂 ,不同的指标代表不同的有机物种类 ,在水处理过程中 ,混凝可以去除部分有机物质 ,对不同的指标去除效率不同 .针对各种有机物指标加以讨论 ,提出合理的控制混凝条件可以影响不同的有机物参数的去除效率  相似文献   

19.
The deposition of atmospheric dust into the ocean has varied considerably over geological time. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean's biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean.  相似文献   

20.
为了实现柴油机的清洁燃烧,有必要对柴油机燃烧颗粒物的生成机理和排放特性进行系统的研究。通过尾气排放检测仪测量,分析柴油机燃烧生成颗粒物的组分及其生成机理;通过台架试验,分析不同负荷下颗粒物的质量特性和粒径分布,对颗粒物在纯氮气和纯氧气下进行热重分析,得出如下结论:柴油机颗粒物的排放量和颗粒数量峰值对应的粒径均与负荷有关,均随负荷的增加呈先降低后升高的趋势;颗粒的挥发性与氧化性则与颗粒的粒径大小相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号