首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 203 毫秒
1.
Cenozoic volcanic rocks from the Haoti, Dangchang County of the western Qinling Mountains, contain a few clearly-zoned olivines. These olivines are relatively big in grain sizes and usually have cracks or broken features. Their cores have similar compositions (Mg#=90.4-91.0) to those for the peridotitic xenoliths entrained in host volcanic rocks and their rims are close to the compositions of olivine phenocrysts (Mg#=85.5-81.9). The CaO contents in these zoned olivines are lower than 0.1%. These features demonstrate that the clearly-zoned olivines are xenocrysts and disaggregated from mantle peridotites. The zoned texture was the result of the interaction between the olivine and host magma. Available data show that the volcanic rocks would have been derived from the mantle source metasomatized by subducted hydrathermally-altered oceanic crust. The formation of these Cenozoic volcanic rocks was perhaps related to the rapid uplift of the Tibetan Plateau.  相似文献   

2.
This paper presents an overview of recent studies dealing with different ages of mantle peridotitic xenoliths and xenocrysts from the North China Craton, with aim to provide new ideas for further study on the destruction of the North China Craton. Re-Os isotopic studies suggest that the lithospheric mantle of the North China Craton is of Archean age prior to its thinning. The key reason why such a low density and highly refractory Archean lithospheric mantle would be thinned is changes in composition, thermal regime, and physical properties of the lithospheric mantle due to interaction of peridotites with melts of different origins. Inward subduction of circum craton plates and collision with the North China Craton provided not only the driving force for the destruction of the craton, but also continuous melts derived from partial melting of subducted continental or oceanic crustal materials that resulted in the compositional change of the lithospheric mantle. Regional thermal anomaly at ca. 120 Ma led to the melting of highly modified lithospheric mantle. At the same time or subsequently lithospheric extension and asthenospheric upwelling further reinforced the melting and thinning of the lithospheric mantle. Therefore, the destruction and thinning of the North China Craton is a combined result of per- idotite-melt interaction (addition of volatile), enhanced regional thermal anomaly (temperature increase) and lithospheric extension (decompression). Such a complex geological process finally produced a "mixed" lithospheric mantle of highly chemical heterogeneity during the Mesozoic and Cenozoic. It also resulted in significant difference in the composition of mantle peridotitic xenoliths between different regions and times.  相似文献   

3.
Delamination and destruction of the North China Craton   总被引:15,自引:0,他引:15  
This article presents an overview on recent developments in studies of chemical and physical processes of lithospheric delamination with respect to destruction of the North China Craton. It is emphasized that the pyroxenite source resulting from interaction between eclogite-derived melt and peridotite is a direct consequence of delamination. The pyroxenite source thus formed has unique mineralogical and geochemical features, which characterize Mesozoic basalts of the North China Craton. Melt-peridotite interaction played an important role in refertilization of cratonic lithospheric mantle, leading to density increase, weakening and final destabilization of the North China Craton. The nature of the melt is the key to distinguish mechanisms of destructing this craton.  相似文献   

4.
He and Ar isotopic compositions of megacrystal minerals from mantle xenoliths were measured by the technique of vacuum crushing extraction. The used samples were clinopyroxene, garnet and ilmenite in Cenozoic alkaline basalts, which were from Nushan in Anhui Province and Ying-fengling in Guangdong Province, respectively, and represented materials from the upper mantle in the continental margin of SE China. The results show ^3He/^4He ratios of 7.99 Ra to 8.58 Ra, consistent with the characteristic ratios of the MORB-type mantle. ^40Ar/^39Ar ratios vary from 313 to 909, suggesting a binary mixing between the MORB-type mantle and air argons. This may reflect the incorporation of the air argon absorbed in oceanic sediments into the mantle beneath the continental margin by subduction of oceanic plate. This study presents the first report that ilmenite megacrysts contain abundant fluid inclusions and noble gases in the mantle xenoliths.  相似文献   

5.
This study presents noble gaseous data of the corundum megacrysts from the Cenozoic basalts in Changle, Shandong Province, eastern China. It is known that no noble gaseous data of corundum megacryst have been documented before. The 3He/4He ratios (1.13-7.37 Ra) of the corundums from Changle vary from atmosphere to MORB values; the 20Ne/22Ne (9.67-10.75) and 21Ne/22Ne (0.0280-0.0372) data define two linear trends on Ne three-isotope diagram, respectively, along the MFL and the correlation line between atmosphere and MORB; the 38Ar/36Ar (0.177-0.194) ratios, the 40Ar/36Ar (280.9 -404.2) ratios and the 128-136Xe/132Xe ration with obvious 129Xe excess are generally higher than at-mospheric component, but the 40Ar/36Ar ratios are much closer to atomospheric ratio. The isotopic compositions of noble gases (particularly for He and Ar) of the corundums are similar to those of py-roxene, anorthoclase megacrysts, and mantle-derived xenoliths from this area, and those of man-tle-derived xenoliths from several areas in eastern China. Therefore, the noble gases trapped in the corundums probably are from mantle source, representing a ‘mixed fluid' produced by the interaction between the lithospheric mantle and fluids releasing from the convective plate. Both the noble gas isotopic compositions and the oxygen isotopic compositions of the solid corundums are not the characteristics of crustal source. These suggest that the corundums crystallized from mantle-derived magmas with minimal crustal contamination.  相似文献   

6.
Re-Os dating of the Raobazhai ultra mafic massif in North Dabie   总被引:6,自引:2,他引:4  
The ultramafic massif at Raobazhai in North Dabie is located in the suture zone between the Yangtze craton and North China eraton. The Re-Os isotope compositions of the massif are used to decipher the origin and tectonics of the ultramafic rocks involved in continental subduction and exhumation. Fifteen samples were collected from five drill holes along the main SE-NW axis of the Raobazhai massif. Major and trace element compositions of the samples show linear correlations between MgO, Yb and Al_2O_3. This suggests that the massif experienced partial melting with variable degrees and is from fertile to deplete in basaltic compositions. Nine selected samples were analyzed for Re-Os isotope compositions. Re contents range from 0.004 to 0.376 rig/g, Os contents from 0.695 to 3.761 ng/g, ~(187)Re/~(188)Os ratios from 0.022 to 2.564 and ~(187)Os/~(188)Os ratios from 0.1165 to 0.1306. These indicate that the massif is a piece of continental lithospheric mantle with variable depletion. Using the positive corre  相似文献   

7.
Abundant deeply-derived xenoUths are discovered in a Mesozoic diorite at Jinling, Zibo, western Shandong, which mainly consist of dunite and pyroxenite. The dunite can be further subdivided into two subtypes. The first type shows tabular texture and high Mg^# values (93—94) in olivines. The second type is characterized by the metamorphic-deformation texture superimposed by later metasomatism and relatively low olivine Mg^# values (86--87). The mineral chemical data indicate that the former could be derived from ancient lithospheric mantle and the latter could have resulted from silica-rich melt metasomatism. The exsolution texture and the high Mg^# value in clinopyroxenes, together with the rather high equilibrium temperature, imply that the pyroxenite xenoliths could be the cumulates of mantle-derived magma in the uppermost mantle or near the crust-mantle boundary in the Mesozoic.  相似文献   

8.
The components and evolution of subcontinental lithospheric mantle beneath the North China Craton and the Yangtze Craton is a current topic in the geological study of China and the carbon isotopic composition of diamond is one of the most direct probes into cratonic lithospheric mantle processes.In this paper,in-situ SIMS(Secondary Ion Mass Spectrometry) techniques were used to analyze the carbon isotope compositions at different internal growth zones of diamonds from Shandong and Liaoning in the North China Craton and Hunan in the Yangtze Craton.It was found that the carbon isotopic range of diamonds from the North China Craton are rather distinct from those of the Yangtze Craton;the former has a range of 6.0‰ to 2.0‰(relative to VPDB) with an average value of 3.0‰ in their core areas,which is consistent with global peridotitic diamonds;the diamonds from the Yangtze Craton,however,have a carbon isotopic range from 8.6‰ to 3.0‰ with an average value of 7.4‰ in their core areas,being more consistent with global eclogitic diamonds.The variations of carbon isotope ratios between different internal growth zones in individual diamonds were different in the three diamond localities studied.There was a clear correlation between changes in carbon isotopic composition and phases of diamond dissolution and new growth,while no correlation was observed between δ13C and internal inclusions.The variations suggest that the carbon isotopic compositions of mantle fluids were changing during the process of diamond crystallization,and that the heterogeneity of the carbon isotopic composition in mantle carbon reservoirs was a more important factor than carbon isotope fractionation in controlling the carbon isotopic compositions and their variation in diamonds.In addition,the preliminary results of in-situ nitrogen analyses demonstrated that the variation of carbon isotopic compositions between the core and outer growth zones does not correlate with nitrogen abundances,implying either that diamonds crystallized in an open environment or that the carbon isotopic composition and nitrogen contents in mantle fluids were controlled by other,not yet understood factors.The experimental results provide hints that the isotopic composition of carbon and its original sources were different in metasomatic fluids controlling diamond formation in the mantle beneath the North China Craton and the Yangtze Craton.  相似文献   

9.
We performed a combined study of He–Ar isotopes and element geochemistry for pyroxene megacrysts and mantle xenoliths from Cenozoic basalt in the Changle–Linqu area in western Shandong.The results are used to trace the evolution of subcontinental lithospheric mantle after destruction of the North China Craton.The3He/4He ratios of pyroxene megacrysts,websterite,and dunites are 7.0–7.7 Ra,7.4 Ra,and 7.0–7.7 Ra,respectively.They are related to the origin of host basalts,and are slightly lower than that of mid-ocean ridge basalts(MORB).Their40Ar/36Ar ratios are much lower than that of MORB and close to that of air.The lherzolites and wehrlites represent the fragments of the newly accreted lithospheric mantle,and their REE and trace elements indicate that they experienced melt metasomatism and partial melting.The3He/4He ratios of their olivine are slightly lower than that of MORB,but3He/4He ratios of their clinopyroxene are low(2.3–7.1 Ra)and display an inverse correlation with(La/Yb)N.The40Ar/36Ar ratios of these clinopyroxene are much lower than that of MORB and close to the air ratio.Combining existing studies of petrology,Sr–Nd–Pb isotopes,O isotopes,trace elements,and Mg isotopes,we infer that the juvenile lithospheric mantle in the Changle–Linqu area was metasomatized by oceanic crust-derived melts,which transfer the supracrustal Ar isotope signatures to the mantle sources.The low4He abundance and low3He/4He ratios of clinopyroxene in the lherzolites and wehrlites are ascribed to metasomatism by crustal melts from the subducted Pacific plate.  相似文献   

10.
Cratonic destruction or lithospheric thinning beneath North China makes it as one of the most ideal areas for the studying on the formation and evolution of continent. However, the mechanism, time, range and dynamic setting of the destruction, even the lithospheric status before the destruction, are contentious. The comparison among mantle xenoliths in the volcanic rocks from different captured times (e.g. Paleozoic, Mesozoic and Cenozoic) and locations (e.g. intra-plate or its rim, the translithospheric Tanlu fault or the North-South Gravity Line), and peridotitic massifs within the Sulu-Dabie ultrahigh-pressure metamorphism belt along the southern margin of the North China Craton, indicates that (1) the cratonic lithosphere is heterogeneous in structure and composition, and contains mantle weak zones; and (2) the Mesozoic-Cenozoic lithospheric thinning process is complex, including lateral spreading of lithosphere, interaction between melt and peridotite, non-even asthenospheric erosion (huge lithospheric thinning), and the limited lithospheric accretion and thus thickening, which resulted in the final replacement of the refractory cratonic lithosphere by juvenile fertile mantle. In early Mesozoic, the integrity of the North China Craton was interrupted, even destroyed by subduction and collision of the Yangtze block. The mantle wedge of the North China Craton was also metasomatized and modified by melt/fluids revealed from the subducted Yangtze continent. Lithospheric mantle extension and tectonic intrusion of the North China Craton also occurred, accompanied by the asthenospheric upwelling that due to the detachement of the subducted Yangtze continent (orogenic root). During early Cretaceous-early Tertiary, the huge thinning of lithosphere was triggered by the upwelling asthenosphere due to the subduction of the Pacific plate. Since late Tertiary, the cooling of the upwelling asthenosphere resulted in the replacement of the mantle in existence by the newly accreted lithosphere, accompanied with a little thickness in lithosphere and thus finally achieved the lithospheric thinning as a whole. The translithospheric faults, such as the Tanlu fault, play excellent channels for asthenospheric upwelling. Meanwhile, the channels in lithosphere are usually irregular, which resulted in different eruption times of magma. Peridotite xenolith in the basalts erupted at 100 Ma is mainly fertile, indicating such a fact, that is, the mantle replacement occurred before the eruption (e.g. 125--100 Ma) beneath the eastern part of the North China Craton.  相似文献   

11.
The North China Block (NCB) experienced extensive lithospheric thinning and subsequent mantle accretion in the Mesozoic to Cenozoic, but their mechanism remains controversial. This paper reports in situ chemical and oxygen isotope analyses on olivine xenocrysts and porphyroclastic olivines in mantle xenoliths hosted in the late Cretaceous basalts from Junan and Qingdao, the Sulu orogen. The results show that all these olivines have low δ 18O values relative to normal mantle peridotite. The olivine xenocrysts and porphyroclastic olivines from Junan have Fo=87.5–89.8, δ 18O=4.1‰–5.2‰ with an average of 4.8‰; the porphyroclastic olivines from Qingdao also have Fo=89.0–89.9, δ 18O=4.1‰–5.2‰ with an average of 4.8‰. These peridotite xenoliths have petrological and geochemical affinities similar to newly accreted MORB-type mantle, we hence consider such low-δ 18O features in the olivines to inherit from a mantle wedge that was metasomatized by melts derived from the subducted oceanic crust, which had experienced high-temperature hydrothermal alteration to acquire the low-δ 18O signatures. Combined the existence of Cenozoic low-δ 18O basalts and garnet pyroxenite xenoliths (relicts of recycled oceanic crust) hosted in Cenozoic basalts in the NCB, the subducted oceanic crust likely played an important role in the lithospheric evolution of the NCB during the Mesozoic to Cenozoic.  相似文献   

12.
Melt inclusions or glasses usually occur in spinel- facies peridotitic xenoliths entrained in the global ba- salts[1―4], and olivine phenocrysts and/or xenocrysts carried in the intermediate-mafic volcanic rocks (such as basalts, basaltic andesites and h…  相似文献   

13.
Studies of mantle xenoliths hosted in both the Cenozoic alkali basalt and the Early Paleozoic kimberlite suggest that part of the subcontinental lithosphere as thick as more than 100 km has been lost from the Early Paleozoic to Cenozoic[1—8]. Neither the scale and mechanism nor the accurate timing of the lithospheric thinning has been precisely constrained[7-12]. One of the reasons for this is that there are only a few Mesozoic basalts cropped out, especially, few containing mantle-derived …  相似文献   

14.
Recycling lower continental crust in the North China craton   总被引:85,自引:0,他引:85  
Gao S  Rudnick RL  Yuan HL  Liu XM  Liu YS  Xu WL  Ling WL  Ayers J  Wang XC  Wang QH 《Nature》2004,432(7019):892-897
Foundering of mafic lower continental crust into underlying convecting mantle has been proposed as one means to explain the unusually evolved chemical composition of Earth's continental crust, yet direct evidence of this process has been scarce. Here we report that Late Jurassic high-magnesium andesites, dacites and adakites (siliceous lavas with high strontium and low heavy-rare-earth element and yttrium contents) from the North China craton have chemical and petrographic features consistent with their origin as partial melts of eclogite that subsequently interacted with mantle peridotite. Similar features observed in adakites and some Archaean sodium-rich granitoids of the tonalite-trondhjemite-granodiorite series have been interpreted to result from interaction of slab melts with the mantle wedge. Unlike their arc-related counterparts, however, the Chinese magmas carry inherited Archaean zircons and have neodymium and strontium isotopic compositions overlapping those of eclogite xenoliths derived from the lower crust of the North China craton. Such features cannot be produced by crustal assimilation of slab melts, given the high Mg#, nickel and chromium contents of the lavas. We infer that the Chinese lavas derive from ancient mafic lower crust that foundered into the convecting mantle and subsequently melted and interacted with peridotite. We suggest that lower crustal foundering occurred within the North China craton during the Late Jurassic, and thus provides constraints on the timing of lithosphere removal beneath the North China craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号