首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 265 毫秒
1.
微波辐射下交联壳聚糖树脂的制备及其吸附性能   总被引:1,自引:0,他引:1  
周悦  龙来寿 《韶关学院学报》2005,26(6):70-72,110
在稀醋酸溶液中,微波辐射下壳聚糖与Zn^2+反应制备了壳聚糖Zn^2+配合物,然后将制得的配合物与环氧氯丙烷在微波辐射下进行交联反应后,用稀酸除去Zn^2+,合成了具有Zn^2+孔穴的交联壳聚糖树脂,实验考察了该树脂对一些金属离子的吸附性能,并对影响树脂吸附性能的因素进行了研究。  相似文献   

2.
微波辐射下壳聚糖的化学改性及其应用研究(Ⅱ)   总被引:7,自引:3,他引:4  
在稀醋酸溶液中,微波辐射下壳聚糖与Cu^2+反应制备了壳聚糖Cu^2+配合物,然后将制得的配合物与环氧氯丙烷在微波辐射下再进行交联反应后,用稀酸除去Cu^2+,合成了具有Cu^2+离子孔穴的交联壳聚糖树脂。考察了该树脂对Cu^2+、Ni^2+、Co^2+的吸附性能。实验表明,使用微波辐射模板法制备具有Cu^2+离子孔穴的交联壳聚糖树脂,能大大缩短反应时间;制备的树脂在酸性条件下不会发生软化和溶解,  相似文献   

3.
微波辐射下,用壳聚糖在稀醋酸介质中与Cu2+制得壳聚糖Cu2+络合物, 然后使壳聚糖铜络合物与戊二醛进行交联, 用稀酸洗去Cu2+, 制得具有Cu2+模板离子孔穴的交联壳聚糖树脂, 考察了该树脂对Cu2+的吸附性能. 实验表明, 微波加热所得的交联壳聚糖, 在酸性条件下不会发生软化和溶解, 重复使用性能亦好, 且比水浴加热制得的具有Cu2+模板离子孔穴的交联壳聚糖对铜有较大的吸附量.  相似文献   

4.
微波辐射下模板交联壳聚糖的制备及其对Cu^2+吸附 …   总被引:6,自引:1,他引:5  
微波辐射下,用壳聚在烯醋酸介质中与Cu^2+制得壳聚糖Cu^2+络合物,然后使壳聚糖铜络合物与戊二醛进行交联,用稀酸洗去Cu^2+,制得具有Cu^2+模板离子孔穴的壳聚糖树脂,考虑了该树脂对Cu^2+的吸附性能。实验表明,微波加热所得的交联壳聚糖,在酸性条件下不会发生软化和溶解,重复使用性能亦好,且比水浴加热制得的具有Cu^2+模板离子孔穴的交联壳聚糖对铜有较大的吸附量。  相似文献   

5.
以壳聚糖为原料,在微波辐射下,根据模板法制备了具有Cu2+空穴的球形胺化交联壳聚糖树脂.采用FT-IR和SEM对树脂的形貌和结构进行了表征,并对影响树脂吸附性能的因素进行了研究.结果表明,树脂具有能够吸附金属离子的活性基团,表面颗粒均匀;当无水乙醇为3mL、环氧氯丙烷为5mL、四乙烯五胺为4.8 mL、胺化时间为3 min时,制得的壳聚糖树脂对Cu2+具有良好的吸附性能,吸附容量为326.55 mg/g.  相似文献   

6.
利用微波辐射法合成了甲醛交联壳聚糖香草醛希夫碱,用IR和XRD对其结构进行了表征,并用UV吸收光谱比较了甲醛交联前后壳聚糖香草醛希夫碱在酸中的溶解性能.吸附实验表明,该壳聚糖改性产物对一些金属离子的吸附性能与壳聚糖香草醛希夫碱和甲醛交联的壳聚糖有所不同,对Cu2 具有良好的吸附选择性,并且在酸性环境中几乎不溶解,因此可用作Cu2 的选择性吸附剂.  相似文献   

7.
壳聚糖改性微球的微波辐射制备及吸附性能   总被引:1,自引:0,他引:1  
采用微波辐射法制备了戊二醛交联壳聚糖水杨醛希夫碱微球吸附剂.运用傅里叶红外光谱、X射线衍射仪和热重分析仪等表征吸附剂的结构和形貌,研究了吸附剂对金属离子的吸附性能,同时与采用常规水浴合成法加热制备的微球吸附剂进行比较.结果表明:微波辐射法能加快反应的进行,并提高微球吸附剂的产率;傅里叶红外光谱、X射线衍射和热重分析显示产物的结构与预期结构吻合,是壳聚糖接枝交联的结果;同时发现微波辐射法制得的微球吸附剂较为均匀,比表面积增加,且对Pb2+、Cd2+的吸附量显著提高.  相似文献   

8.
为了有效去除造纸白水中的阴离子垃圾,提高造纸白水的回用性,制备了壳聚糖微球,并利用戊二醛进行交联改性,对壳聚糖微球及其交联物在不同pH值和盐浓度下吸附聚半乳糖醛酸的行为进行了研究.结果表明:戊二醛与壳聚糖微球的交联反应很好地符合准二级动力学过程;在酸性及中性条件下,壳聚糖微球及其交联物对聚半乳糖醛酸具有较好的吸附性能;...  相似文献   

9.
采用微波辐射法制备了戊二醛交联壳聚糖水杨醛希夫碱微球吸附剂,使用红外光谱和热重分析表征了吸附剂的结构,研究了其对金属离子的吸附性能,同时与采用常规水浴加热制备的微球吸附剂进行了比较.结果表明,微波辐射法能加快反应的进行,制得的吸附剂微球较为均匀,同时增大了对Pb2+、Cd2+的吸附量.  相似文献   

10.
CCCS与ECCS树脂对Au(Ⅲ)吸附性能的比较   总被引:5,自引:1,他引:4  
分别以环硫氯丙烷和环氧氯丙烷作为交联剂,合成交联壳聚糖树脂,测定其对Au(Ⅲ)的静态吸附性能.采用正交试验法全面考察了环硫氯丙烷交联壳聚糖(CCCS)树脂和环氧氯丙烷交联壳聚糖(ECCS)树脂吸附Au(Ⅲ)过程中,各主要因素对吸附性能的影响.结果表明,环硫氯丙烷交联壳聚糖树脂比环氧氯丙烷交联壳聚糖树脂所能适应的pH值、温度、初始离子浓度等条件范围更广,且在同样吸附条件下,环硫氯丙烷交联壳聚糖树脂比环氧氯丙烷交联壳聚糖树脂有更优良的吸附性能.环硫氯丙烷交联壳聚糖树脂对Au(Ⅲ)的吸附量可达296.67μg/mg,吸附率可达98.1%.  相似文献   

11.
球形壳聚糖树脂对含重金属离子废水的吸附性能研究   总被引:23,自引:0,他引:23  
系统研究了球形交联壳聚糖树脂及分子印迹壳聚糖树脂对去除水体中重金属离子的吸附特性。研究结果表明:壳聚糖树脂交联后,在酸中稳定性增强 ,可重复使用达10次,吸附容量没有明显降低;分子印迹壳聚糖树脂对Ni2+、Zn2+、Cu2+等特定金属离子的吸附容量比非分子印迹壳聚糖树脂提高了1倍左右;同时球形交联壳聚糖树脂与商用吸附树脂相比,两者对Ni2+与柠檬酸镍的吸附容量相当。  相似文献   

12.
壳聚糖对镧系金属离子吸附性的研究   总被引:5,自引:0,他引:5  
壳聚糖分子中含有活性基团-NH2和-OH,可使其与金属离子形成稳定的配合物.研究了壳聚糖对镧系金属离子在不同浓度,不同时间的吸附性,测试手段辅以电感耦合等离子体原子发射光谱法(ICP-AES法).实验结果表明,壳聚糖对镧系金属离子均有吸附性,吸附序列为Nd3+>La3+>Sm3+>Lu3+>Pr3+>Yb3+>Eu3+>Dy3+>Ce3+,并且吸附作用受离子浓度和反应时间的影响.  相似文献   

13.
通过在壳聚糖上交联偕胺肟基(AO)和1-二甲胺基烯丙基膦酸(DMAAPA),制备出一种可用于海水提铀的新型壳聚糖改性材料(CTS-AM-AO-DA),使用FT-IR光谱和扫描电镜表征材料表面的官能团和形貌.通过吸附实验研究了材料在模拟海水中的吸附动力学过程和溶液pH、盐分以及竞争离子对材料吸附性能的影响.CTS-AM-AO-DA在模拟海水中的平衡吸附容量达到223.0 mg/g,吸附过程符合准二级动力学方程.在高pH(8.0)、高盐分(0.5 mol/L NaCl)、存在竞争离子(钙、镁、钒)的条件下,CTS-AM-AO-DA均表现出优异的铀吸附性能,该材料在海水提铀领域具有潜在的应用价值.  相似文献   

14.
以筛选出的芬式纤维微菌属菌株T1为研究对象,研究了其用于固定化生物活性炭(IBAC)工艺对矿山酸性废水(AMD)中重金属Zn2+的吸附规律.结果表明,在水力负荷019m3·(m2·h)-1、气水体积比10∶1、水力停留时间380h,IBAC对Zn2+质量浓度10000mg/L,pH值4的酸性废水中Zn2+去除率达到7518%,且水质得到改善.共存离子Cu2+,Cd2+,Fe3+,Ni2+使IBAC对Zn2+的去除率降低.扫描电镜发现,菌株T1细胞成纤维状,且在活性炭颗粒表面附着生长,吸附Zn2+后细胞体积膨胀.EDS分析表明,固定在活性炭颗粒表面的微生物吸附大量Zn2+.反应动力学研究表明,IBAC吸附AMD中Zn2+基本符合一级反应动力学模型.  相似文献   

15.
以硅藻土与壳聚糖为原料,戊二醛作为交联剂,制备了一种复合吸附材料,研究了其对水中Hg~(2+)的吸附性能,探讨了复合吸附材料的配比、Hg~(2+)初始浓度、吸附材料的质量与吸附时间等因素对Hg~(2+)吸附性能的影响.研究表明,随着硅藻土含量的增加,对应Hg~(2+)的吸附容量与去除率均下降;此外,随着Hg~(2+)初始浓度的提高,其去除率降低,而吸附容量却提高;增加吸附剂的质量,Hg~(2+)的吸附容量与去除率也相应增加;当吸附时间在45 min以内,对应的吸附容量与去除率随吸附时间的增加而提高,当吸附时间超过45 min后,吸附容量与去除率基本不变.  相似文献   

16.
岩石对Zn^2+、Pb^2+的竞争吸附特征   总被引:5,自引:0,他引:5  
采用紫外一可见分光光度法以及原子吸收分光光度法,对岩石静态吸附Pb^2 、Zn^2 的特征进行了研究,结果表明,砂岩从含Zn^2 的溶液中吸附Zn^2 、从Pb^2 和Zn^2 混合溶液中吸附Pb^2 和Zn^2 以及角砾岩从Pb^2 和Zn^2 混合溶液中吸附Pb^2 的过程均是类分形的;角砾岩和砂岩对铅的吸附速率大于锌,在铅存在的情况下锌的吸附能力减弱;角砾岩和砂岩对铅离子的吸附量相差不大,但角砾岩对锌离子的吸附能力强于砂岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号