首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble form of CD4 (T4) protein inhibits AIDS virus infection   总被引:99,自引:0,他引:99  
CD4 (T4) is a glycoprotein of relative molecular mass 55,000 (Mr 55K) on the surface of T lymphocytes which is thought to interact with class II MHC (major histocompatibility complex) molecules, mediating efficient association of helper T cells with antigen-bearing targets. The CD4 protein is also the receptor for HIV, a T-lymphotropic RNA virus responsible for the human acquired immune deficiency syndrome (AIDS) (refs 4-7). To define the mechanisms of interaction of CD4 with the surface of antigen-presenting cells and with HIV, we have isolated the CD4 gene and expressed this gene in several different cellular environments. Here we describe an efficient expression system in which a recombinant, soluble form of CD4 (sCD4) is secreted into tissue culture supernatants. This sCD4 retains the structural and biological properties of CD4 on the cell surface, binds to the envelope glycoprotein (gp110) of HIV and inhibits the binding of virus to CD4+ lymphocytes, resulting in a striking inhibition of virus infectivity.  相似文献   

2.
Skewed maturation of memory HIV-specific CD8 T lymphocytes   总被引:89,自引:0,他引:89  
Understanding the lineage differentiation of memory T cells is a central question in immunology. We investigated this issue by analysing the expression of the chemokine receptor CCR7, which defines distinct subsets of naive and memory T lymphocytes with different homing and effector capacities and antiviral immune responses to HIV and cytomegalovirus. Ex vivo analysis of the expression of CD45RA and CCR7 antigens, together with in vitro analysis of the cell-division capacity of different memory CD8+ T-cell populations, identified four subsets of HIV- and CMV-specific CD8+ T lymphocytes, and indicated the following lineage differentiation pattern: CD45RA+ CCR7+ --> CD45RA- CCR7+ --> CD45RA- CCR7- --> CD45RA+ CCR7-. Here we demonstrate through analysis of cell division (predominantly restricted to the CCR7+ CD8+ T-cell subsets) that the differentiation of antigen-specific CD8+ T cells is a two-step process characterized initially by a phase of proliferation largely restricted to the CCR7+ CD8+ cell subsets, followed by a phase of functional maturation encompassing the CCR7- CD8+ cell subsets. The distribution of these populations in HIV- and CMV-specific CD8+ T cells showed that the HIV-specific cell pool was predominantly (70%) composed of pre-terminally differentiated CD45RA- CCR7- cells, whereas the CMV-specific cell pool consisted mainly (50%) of the terminally differentiated CD45RA+ CCR7- cells. These results demonstrate a skewed maturation of HIV-specific memory CD8+ T cells during HIV infection.  相似文献   

3.
Patients with the acquired immune deficiency syndrome (AIDS) and AIDS-related conditions are known to have abnormalities of T cell subpopulations, including a decreased helper/inducer (bearing the CD4 antigen) to suppressor/cytotoxic (bearing the CD8 antigen) T cell ratio and decreased absolute numbers of T cells with the CD4+ phenotype. Infection of T cells with a retrovirus, termed human immunodeficiency virus (HIV), is thought to be important in these abnormalities. HIV infection alone does not adequately explain the CD4+ T-cell abnormalities seen in AIDS, however, and the nature of T-cell destruction in this disease remains poorly characterized. Here we describe an AIDS-related serum autoantibody that reacts with an antigen of relative molecular mass 18,000 (Mr 18K) restricted to lectin-stimulated or HIV-infected CD4+ T cells. The antibody also suppresses proliferation of CD4+ T cells in vitro and induces cytotoxicity of these cells in the presence of complement. Its role in the development of AIDS merits attention.  相似文献   

4.
The extreme polymorphism in the human leukocyte antigen (HLA) class I region of the human genome is suggested to provide an advantage in pathogen defence mediated by CD8+ T cells. HLA class I molecules present pathogen-derived peptides on the surface of infected cells for recognition by CD8+ T cells. However, the relative contributions of HLA-A and -B alleles have not been evaluated. We performed a comprehensive analysis of the class I restricted CD8+ T-cell responses against human immunodeficiency virus (HIV-1), immune control of which is dependent upon virus-specific CD8+ T-cell activity. In 375 HIV-1-infected study subjects from southern Africa, a significantly greater number of CD8+ T-cell responses are HLA-B-restricted, compared to HLA-A (2.5-fold; P = 0.0033). Here we show that variation in viral set-point, in absolute CD4 count and, by inference, in rate of disease progression in the cohort, is strongly associated with particular HLA-B but not HLA-A allele expression (P < 0.0001 and P = 0.91, respectively). Moreover, substantially greater selection pressure is imposed on HIV-1 by HLA-B alleles than by HLA-A (4.4-fold, P = 0.0003). These data indicate that the principal focus of HIV-specific activity is at the HLA-B locus. Furthermore, HLA-B gene frequencies in the population are those likely to be most influenced by HIV disease, consistent with the observation that B alleles evolve more rapidly than A alleles. The dominant involvement of HLA-B in influencing HIV disease outcome is of specific relevance to the direction of HIV research and to vaccine design.  相似文献   

5.
J A McKeating  P D Griffiths  R A Weiss 《Nature》1990,343(6259):659-661
The main receptor for the human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) on T and B lymphocytes, monocytes and macrophages is the CD4 antigen 1-3. Infection of these cells is blocked by monoclonal antibodies to CD4(1,2) and by recombinant soluble CD4(4-9). Expression of transfected CD4 on the surface of HeLa and other human cells renders them susceptible to HIV infection 10. HIV-antibody complexes can also infect monocytes and macrophages by means of receptors for the Fc portion of immunoglobulins (FcR)11-13), or complement receptors 14,15. The expression of IgG FcRs can be induced in cells infected with human herpes viruses such as herpes simplex virus type 1 (HSV-1)16,17 and human cytomegalovirus (CMV)18-21. Here we demonstrate that FcRs induced by CMV allow immune complexes of HIV to infect fibroblasts otherwise not permissive to HIV infection. Infection was inhibited by prior incubation with human IgG, but not by anti-CD4 antibody or by recombinant soluble CD4. Once HIV had entered CMV-infected cells by means of the FcR, its replication could be enhanced by CMV transactivating factors. Synergism between HIV and herpes viruses could also operate in vivo, enhancing immunosuppression and permitting the spread of HIV to cells not expressing CD4.  相似文献   

6.
The 'help' provided by CD4+ T lymphocytes during the priming of CD8+ T lymphocytes confers a key feature of immune memory: the capacity for autonomous secondary expansion following re-encounter with antigen. Once primed in the presence of CD4+ T cells, 'helped' CD8+ T cells acquire the ability to undergo a second round of clonal expansion upon restimulation in the absence of T-cell help. 'Helpless' CD8+ T cells that are primed in the absence of CD4+ T cells, in contrast, can mediate effector functions such as cytotoxicity and cytokine secretion upon restimulation, but do not undergo a second round of clonal expansion. These disparate responses have features of being 'programmed', that is, guided by signals that are transmitted to naive CD8+ T cells during priming, which encode specific fates for their clonal progeny. Here we explore the instructional programme that governs the secondary response of CD8+ T cells and find that helpless cells undergo death by activation-induced cell death upon secondary stimulation. This death is mediated by tumour-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Regulation of Trail expression can therefore account for the role of CD4+ T cells in the generation of CD8+ T cell memory and represents a novel mechanism for controlling adaptive immune responses.  相似文献   

7.
8.
Apart from the retroviral gag, pol and env the HIV genome contains the F (3' orf) gene which encodes a polypeptide of 206 amino acids which is myristylated at the N-terminal and whose function is unknown. We have expressed the F gene in Escherichia coli and from a recombinant vaccinia virus, VVTGfHIV. The F-protein produced in VVTGfHIV-infected mammalian cells is myristilated, and is phosphorylated by protein kinase C at a residue close to the N-terminus like pp60-src (ref. 5). Purified bacterial F-protein also shows the GTPase, autophosphorylation and GTP-binding activities reported for the ras gene product. Furthermore, we show that expression of F in a CD4+ cell line down-regulates the CD4(T4) antigen. These results suggest that F is important in the pathophysiology of AIDS (acquired immune deficiency syndrome).  相似文献   

9.
L Buonocore  J K Rose 《Nature》1990,345(6276):625-628
The envelope glycoprotein (gp120/41) of the human immunodeficiency virus (HIV-1) attaches the virus to the cellular CD4 receptor and mediates virus entry into the cytoplasm. In addition to being required for formation of infectious HIV, expression of gp120/41 at the plasma membrane causes the cytopathic fusion of cells carrying the CD4 antigen. The expression of gp120/41 is therefore an ideal target for therapeutic strategies designed to combat AIDS. Here we show that expression of a soluble CD4 molecule, mutated to contain a specific retention signal for the endoplasmic reticulum, blocks secretion of gp120 and surface expression of gp120/41, but does not interfere with transport of wild-type CD4. By blocking transport of the HIV glycoprotein, this retained CD4 molecule prevents the fusion of CD4 cells that is normally caused by the HIV glycoprotein. Expression of the retained CD4 molecule in human T cells might therefore be useful in the intracellular immunization procedure suggested by Baltimore.  相似文献   

10.
T cells express T-cell antigen receptors (TCR) for the recognition of antigen in conjunction with the products of the major histocompatibility complex. They also express two key surface coreceptors, CD4 and CD8, which are involved in the interaction with their ligands. As CD4 is expressed on the early haemopoietic progenitor as well as the early thymic precursor cells, a role for CD4 in haemopoiesis and T-cell development is implicated. Thymocytes undergo a series of differentiation and selection steps to become mature CD4+8- or CD4-8+ (single positive) T cells. Studies of the role of CD4+ T cells in vivo have been based on adoptive transfer of selected or depleted lymphocytes, or in vivo treatment of thymectomized mice with monoclonal antibodies causing depletion of CD4+ T cells. In order to study the role of the CD4 molecule in the development and function of lymphocytes, we have disrupted the CD4 gene in embryonic stem cells by homologous recombination. Germ-line transmission of the mutation produces mutant mouse strains that do not express CD4 on the cell surface. In these mice, the development of CD8+ T cells and myeloid components is unaltered, indicating that expression of CD4 on progenitor cells and CD4+ CD8+ (double positive) thymocytes is not obligatory. Here we report that these mice have markedly decreased helper cell activity for antibody responses, although cytotoxic T-cell activity against viruses is in the normal range. This differential requirement for CD4+ helper T cells is important to our understanding of immune disorders including AIDS, in which CD4+ cells are reduced or absent.  相似文献   

11.
Prevention of HIV-1 IIIB infection in chimpanzees by CD4 immunoadhesin   总被引:11,自引:0,他引:11  
The first step in infection by the human immunodeficiency virus (HIV) is the specific binding of gp120, the envelope glycoprotein of HIV, to its cellular receptor, CD4. To inhibit this interaction, soluble CD4 analogues that compete for gp120 binding and block HIV infection in vitro have been developed. To determine whether these analogues can protect an uninfected individual from challenge with HIV, we used the chimpanzee model system of cell-free HIV infection. Chimpanzees are readily infected with the IIIB strain of HIV-1, becoming viraemic within about 4-6 weeks of challenge, although they do not develop the profound CD4+ T-cell depletion and immunodeficiency characteristic of HIV infection in humans. CD4 immunoadhesin (CD4-IgG), a chimaeric molecule consisting of the N-terminal two immunoglobulin-like regions of CD4 joined to the Fc region of human IgG1, was selected as the CD4 analogue for testing because it has a longer half-life than CD4, contributed by the IgG Fc portion of the molecule. In humans, this difference results in a 25-fold increased concentration of CD4-IgG in the blood compared with recombinant CD4. Here we report that pretreatment with CD4-IgG can prevent the infection of chimpanzees with HIV-1. The need for a preventative agent is particularly acute in perinatal HIV transmission. As recombinant CD4-IgG, like the parent IgG molecule, efficiently crosses the primate placenta, it may be possible to set up an immune state in a fetus before HIV transfer occurs, thus preventing infection.  相似文献   

12.
SAP is required for generating long-term humoral immunity   总被引:21,自引:0,他引:21  
Crotty S  Kersh EN  Cannons J  Schwartzberg PL  Ahmed R 《Nature》2003,421(6920):282-287
Long-lived plasma cells and memory B cells are the primary cellular components of long-term humoral immunity and as such are vitally important for the protection afforded by most vaccines. The SAP gene has been identified as the genetic locus responsible for X-linked lymphoproliferative disease, a fatal immunodeficiency. Mutations in SAP have also been identified in some cases of severe common variable immunodeficiency disease. The underlying cellular basis of this genetic disorder remains unclear. We have used a SAP knockout mouse model system to explore the role of SAP in immune responses. Here we report that mice lacking expression of SAP generate strong acute IgG antibody responses after viral infection, but show a near complete absence of virus-specific long-lived plasma cells and memory B cells, despite the presence of virus-specific memory CD4+ T cells. Adoptive transfer experiments show that SAP-deficient B cells are normal and the defect is in CD4+ T cells. Thus, SAP has a crucial role in CD4+ T-cell function: it is essential for late B-cell help and the development of long-term humoral immunity but is not required for early B-cell help and class switching.  相似文献   

13.
14.
A long-standing paradox in cellular immunology concerns the conditional requirement for CD4+ T-helper (T(H)) cells in the priming of cytotoxic CD8+ T lymphocyte (CTL) responses in vivo. Whereas CTL responses against certain viruses can be primed in the absence of CD4+ T cells, others, such as those mediated through 'cross-priming' by host antigen-presenting cells, are dependent on T(H) cells. A clearer understanding of the contribution of T(H) cells to CTL development has been hampered by the fact that most T(H)-independent responses have been demonstrated ex vivo as primary cytotoxic effectors, whereas T(H)-dependent responses generally require secondary in vitro re-stimulation for their detection. Here, we have monitored the primary and secondary responses of T(H)-dependent and T(H)-independent CTLs and find in both cases that CD4+ T cells are dispensable for primary expansion of CD8+ T cells and their differentiation into cytotoxic effectors. However, secondary CTL expansion (that is, a secondary response upon re-encounter with antigen) is wholly dependent on the presence of T(H) cells during, but not after, priming. Our results demonstrate that T-cell help is 'programmed' into CD8+ T cells during priming, conferring on these cells a hallmark of immune response memory: the capacity for functional expansion on re-encounter with antigen.  相似文献   

15.
Mattapallil JJ  Douek DC  Hill B  Nishimura Y  Martin M  Roederer M 《Nature》2005,434(7037):1093-1097
It has recently been established that both acute human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections are accompanied by a dramatic and selective loss of memory CD4+ T cells predominantly from the mucosal surfaces. The mechanism underlying this depletion of memory CD4+ T cells (that is, T-helper cells specific to previously encountered pathogens) has not been defined. Using highly sensitive, quantitative polymerase chain reaction together with precise sorting of different subsets of CD4+ T cells in various tissues, we show that this loss is explained by a massive infection of memory CD4+ T cells by the virus. Specifically, 30-60% of CD4+ memory T cells throughout the body are infected by SIV at the peak of infection, and most of these infected cells disappear within four days. Furthermore, our data demonstrate that the depletion of memory CD4+ T cells occurs to a similar extent in all tissues. As a consequence, over one-half of all memory CD4+ T cells in SIV-infected macaques are destroyed directly by viral infection during the acute phase-an insult that certainly heralds subsequent immunodeficiency. Our findings point to the importance of reducing the cell-associated viral load during acute infection through therapeutic or vaccination strategies.  相似文献   

16.
Intestinal epithelial cells (IECs) provide a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestinal (GI) tract, but the influence of IECs on the development and regulation of immunity to infection is unknown. Here we show that IEC-intrinsic IkappaB kinase (IKK)-beta-dependent gene expression is a critical regulator of responses of dendritic cells and CD4+ T cells in the GI tract. Mice with an IEC-specific deletion of IKK-beta show a reduced expression of the epithelial-cell-restricted cytokine thymic stromal lymphopoietin in the intestine and, after infection with the gut-dwelling parasite Trichuris, fail to develop a pathogen-specific CD4+ T helper type 2 (T(H)2) response and are unable to eradicate infection. Further, these animals show exacerbated production of dendritic-cell-derived interleukin-12/23p40 and tumour necrosis factor-alpha, increased levels of CD4+ T-cell-derived interferon-gamma and interleukin-17, and develop severe intestinal inflammation. Blockade of proinflammatory cytokines during Trichuris infection ablates the requirement for IKK-beta in IECs to promote CD4+ T(H)2 cell-dependent immunity, identifying an essential function for IECs in tissue-specific conditioning of dendritic cells and limiting type 1 cytokine production in the GI tract. These results indicate that the balance of IKK-beta-dependent gene expression in the intestinal epithelium is crucial in intestinal immune homeostasis by promoting mucosal immunity and limiting chronic inflammation.  相似文献   

17.
The clinical manifestations of AIDS (acquired immune deficiency syndrome) often include neuropsychiatric and neurological deficits, including early memory loss and progressive dementia. HIV (human immunodeficiency virus), the aetiological agent of AIDS, is probably carried by infected macrophages in the central nervous system. The virus enters cells by binding its envelope glycoprotein gp120 to the CD4 antigen present on brain and immune cells. From the data reported in this paper, we now suggest that the neuronal deficits associated with HIV may not be entirely a result of infectivity, but that gp120 shed from HIV could directly produce the neuropathology as a result of its interference with endogenous neurotrophic substances. It is known that an analogue of a sequence contained in vasoactive intestinal peptide (VIP) occurs in all known sequenced gp120 isolates and that VIP is important for neuronal survival in cell culture. Here we show that purified gp120 from two diverse HIV isolates and a recombinant gp120 from a third isolate were all potent in specifically producing significant neuronal cell death in dissociated hippocampal cultures derived from fetal mice, and that this could be reduced by monoclonal antibodies against the murine CD4 antigen and completely antagonized by VIP.  相似文献   

18.
A P Fields  D P Bednarik  A Hess  W S May 《Nature》1988,333(6170):278-280
AIDS is an immunoregulatory disorder characterized by depletion of the CD4+, helper/inducer lymphocyte population. The causative agent of this disease is the human immunodeficiency virus, HIV, which infects CD4+ cells and leads to cytopathic effects characterized by syncytia formation and cell death. Recent studies have demonstrated that binding of HIV to its cellular receptor CD4 is necessary for viral entry. We find that binding of HIV to CD4 induces rapid and sustained phosphorylation of CD4 which could involve protein kinase C. HIV-induced CD4 phosphorylation can be blocked by antibody against CD4 and monoclonal antibody against the HIV envelope glycoprotein gp120, indicating that a specific interaction between CD4 and gp120 is required for phosphorylation. Electron microscopy shows that a protein kinase C inhibitor does not impair binding of HIV to CD4+ cells, but causes an apparent accumulation of virus particles at the cell surface, at the same time inhibiting viral infectivity. These results indicate a possible role for HIV-induced CD4 phosphorylation in viral entry and identify a potential target for antiviral therapy.  相似文献   

19.
20.
Although human immunodeficiency virus-1 (HIV-1) infects quiescent and proliferating CD4+ lymphocytes, the virus replicates poorly in resting T cells. Factors that block viral replication in these cells might help to prolong the asymptomatic phase of HIV infection; however, the molecular mechanisms that control this process are not fully understood. Here we show that Murr1, a gene product known previously for its involvement in copper regulation, inhibits HIV-1 growth in unstimulated CD4+ T cells. This inhibition was mediated in part through its ability to inhibit basal and cytokine-stimulated nuclear factor (NF)-kappaB activity. Knockdown of Murr1 increased NF-kappaB activity and decreased IkappaB-alpha concentrations by facilitating phospho-IkappaB-alpha degradation by the proteasome. Murr1 was detected in CD4+ T cells, and RNA-mediated interference of Murr1 in primary resting CD4+ lymphocytes increased HIV-1 replication. Through its effects on the proteasome, Murr1 acts as a genetic restriction factor that inhibits HIV-1 replication in lymphocytes, which could contribute to the regulation of asymptomatic HIV infection and the progression of AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号