首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Apoptosis is an evolutionarily conserved cell suicide process executed by cysteine proteases (caspases) and regulated by the opposing factions of the Bcl-2 protein family. Mammalian caspase-9 and its activator Apaf-1 were thought to be essential, because mice lacking either of them display neuronal hyperplasia and their lymphocytes and fibroblasts seem resistant to certain apoptotic stimuli. Because Apaf-1 requires cytochrome c to activate caspase-9, and Bcl-2 prevents mitochondrial cytochrome c release, Bcl-2 is widely believed to inhibit apoptosis by safeguarding mitochondrial membrane integrity. Our results suggest a different, broader role, because Bcl-2 overexpression increased lymphocyte numbers in mice and inhibited many apoptotic stimuli, but the absence of Apaf-1 or caspase-9 did not. Caspase activity was still discernible in cells lacking Apaf-1 or caspase-9, and a potent caspase antagonist both inhibited apoptosis and retarded cytochrome c release. We conclude that Bcl-2 regulates a caspase activation programme independently of the cytochrome c/Apaf-1/caspase-9 'apoptosome', which seems to amplify rather than initiate the caspase cascade.  相似文献   

2.
Nakagawa T  Zhu H  Morishima N  Li E  Xu J  Yankner BA  Yuan J 《Nature》2000,403(6765):98-103
Apoptosis, or cellular suicide, is important for normal development and tissue homeostasis, but too much or too little apoptosis can also cause disease. The family of cysteine proteases, the so- called caspases, are critical mediators of programmed cell death, and thus far 14 family members have been identified. Some of these, such as caspase-8, mediate signal transduction downstream of death receptors located on the plasma membrane. Others, such as caspase-9, mediate apoptotic signals after mitochondrial damage. Stress in the endoplasmic reticulum (ER) can also result in apoptosis. Here we show that caspase-12 is localized to the ER and activated by ER stress, including disruption of ER calcium homeostasis and accumulation of excess proteins in ER, but not by membrane- or mitochondrial-targeted apoptotic signals. Mice that are deficient in caspase-12 are resistant to ER stress-induced apoptosis, but their cells undergo apoptosis in response to other death stimuli. Furthermore, we show that caspase-12-deficient cortical neurons are defective in apoptosis induced by amyloid-beta protein but not by staurosporine or trophic factor deprivation. Thus, caspase-12 mediates an ER-specific apoptosis pathway and may contribute to amyloid-beta neurotoxicity.  相似文献   

3.
Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.  相似文献   

4.
Riedl SJ  Li W  Chao Y  Schwarzenbacher R  Shi Y 《Nature》2005,434(7035):926-933
Apoptosis is executed by caspases, which undergo proteolytic activation in response to cell death stimuli. The apoptotic protease-activating factor 1 (Apaf-1) controls caspase activation downstream of mitochondria. During apoptosis, Apaf-1 binds to cytochrome c and in the presence of ATP/dATP forms an apoptosome, leading to the recruitment and activation of the initiator caspase, caspase-9 (ref. 2). The mechanisms underlying Apaf-1 function are largely unknown. Here we report the 2.2-A crystal structure of an ADP-bound, WD40-deleted Apaf-1, which reveals the molecular mechanism by which Apaf-1 exists in an inactive state before ATP binding. The amino-terminal caspase recruitment domain packs against a three-layered alpha/beta fold, a short helical motif and a winged-helix domain, resulting in the burial of the caspase-9-binding interface. The deeply buried ADP molecule serves as an organizing centre to strengthen interactions between these four adjoining domains, thus locking Apaf-1 in an inactive conformation. Apaf-1 binds to and hydrolyses ATP/dATP and their analogues. The binding and hydrolysis of nucleotides seem to drive conformational changes that are essential for the formation of the apoptosome and the activation of caspase-9.  相似文献   

5.
在缺氧或呼吸链抑制剂存在条件下,细胞的呼吸链受到抑制,线粒体的功能受到直接干扰,细胞色素C通过线粒体的外膜特异性通道进入细胞浆内,启动了procaspase-3等一系列凋亡因子,细胞发生与线粒体相关的凋亡。另一方面,因线粒体的功能被抑制,细胞内的钙离子浓度升高,calpain被激活并裂解细胞膜蛋白及细胞内的生物化学分子,促进了细胞凋亡的发生。鱼藤酮作为线粒体呼吸链complexI的抑制剂可导致细胞凋亡,其凋亡途径不仅与caspase介导的机制有关,还有可能与calpain有关。  相似文献   

6.
The harlequin mouse mutation downregulates apoptosis-inducing factor   总被引:35,自引:0,他引:35  
Harlequin (Hq) mutant mice have progressive degeneration of terminally differentiated cerebellar and retinal neurons. We have identified the Hq mutation as a proviral insertion in the apoptosis-inducing factor (Aif) gene, causing about an 80% reduction in AIF expression. Mutant cerebellar granule cells are susceptible to exogenous and endogenous peroxide-mediated apoptosis, but can be rescued by AIF expression. Overexpression of AIF in wild-type granule cells further decreases peroxide-mediated cell death, suggesting that AIF serves as a free radical scavenger. In agreement, dying neurons in aged Hq mutant mice show oxidative stress. In addition, neurons damaged by oxidative stress in both the cerebellum and retina of Hq mutant mice re-enter the cell cycle before undergoing apoptosis. Our results provide a genetic model of oxidative stress-mediated neurodegeneration and demonstrate a direct connection between cell cycle re-entry and oxidative stress in the ageing central nervous system.  相似文献   

7.
Inactivation of the apoptosis effector Apaf-1 in malignant melanoma   总被引:47,自引:0,他引:47  
Metastatic melanoma is a deadly cancer that fails to respond to conventional chemotherapy and is poorly understood at the molecular level. p53 mutations often occur in aggressive and chemoresistant cancers but are rarely observed in melanoma. Here we show that metastatic melanomas often lose Apaf-1, a cell-death effector that acts with cytochrome c and caspase-9 to mediate p53-dependent apoptosis. Loss of Apaf-1 expression is accompanied by allelic loss in metastatic melanomas, but can be recovered in melanoma cell lines by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine (5aza2dC). Apaf-1-negative melanomas are invariably chemoresistant and are unable to execute a typical apoptotic programme in response to p53 activation. Restoring physiological levels of Apaf-1 through gene transfer or 5aza2dC treatment markedly enhances chemosensitivity and rescues the apoptotic defects associated with Apaf-1 loss. We conclude that Apaf-1 is inactivated in metastatic melanomas, which leads to defects in the execution of apoptotic cell death. Apaf-1 loss may contribute to the low frequency of p53 mutations observed in this highly chemoresistant tumour type.  相似文献   

8.
Caspase-9-mediated apoptosis (programmed cell death) plays a central role in the development and homeostasis of all multicellular organisms. Mature caspase-9 is derived from its procaspase precursor as a result of recruitment by the activating factor Apaf-1. The crystal structures of the caspase-recruitment domain of Apaf-1 by itself and in complex with the prodomain of procaspase-9 have been determined at 1.6 and 2.5 A resolution, respectively. These structures and other evidence reveal that each molecule of Apaf-1 interacts with a molecule of procaspase-9 through two highly charged and complementary surfaces formed by non-conserved residues; these surfaces determine recognition specificity through networks of intermolecular hydrogen bonds and van der Waals interactions. Mutation of the important interface residues in procaspase-9 or Apaf-1 prevents or reduces activation of procaspase-9 in a cell-free system. Wild-type, but not mutant, prodomains of caspase-9 completely inhibit catalytic processing of procaspase-9. Furthermore, analysis of homologues from Caenorhabditis elegans indicates that recruitment of CED-3 by CED-4 is probably mediated by the same set of conserved structural motifs, with a corresponding change in the specificity-determining residues.  相似文献   

9.
Caspase-3 is the major factor in apoptosis triggered by various stimuli, and plays a critical role during the apoptosis process. By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 enzymatic activities were detected in response to alginic acid bacteria in Laminaria japonica sporophytic tissues. Results showed that caspase-3 enzymatic activities were observed at 5 min after the infection. Caspase-3 enzymatic activity increased with the infection time, and had a tendency of moving from the infection site to outside. By applying caspase-specific peptide inhibitor Z-VAD-FMK, caspase-3 activation could be effectively abolished in the infected tissues. Our results indicate that programmed cell death (PCD) may be involved in the infected Laminaria japonica sporophytic tissues, and provide the evidence that defense mechanisms in algae may have similar caspase cascade events in animals.  相似文献   

10.
Jagasia R  Grote P  Westermann B  Conradt B 《Nature》2005,433(7027):754-760
Genetic analyses in Caenorhabditis elegans have been instrumental in the elucidation of the central cell-death machinery, which is conserved from C. elegans to mammals. One possible difference that has emerged is the role of mitochondria. By releasing cytochrome c, mitochondria are involved in the activation of caspases in mammals. However, there has previously been no evidence that mitochondria are involved in caspase activation in C. elegans. Here we show that mitochondria fragment in cells that normally undergo programmed cell death during C. elegans development. Mitochondrial fragmentation is induced by the BH3-only protein EGL-1 and can be blocked by mutations in the bcl-2-like gene ced-9, indicating that members of the Bcl-2 family might function in the regulation of mitochondrial fragmentation in apoptotic cells. Mitochondrial fragmentation is independent of CED-4/Apaf-1 and CED-3/caspase, indicating that it occurs before or simultaneously with their activation. Furthermore, DRP-1/dynamin-related protein, a key component of the mitochondrial fission machinery, is required and sufficient to induce mitochondrial fragmentation and programmed cell death during C. elegans development. These results assign an important role to mitochondria in the cell-death pathway in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号