首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
双环笼状磷酸酯在膨胀阻燃涂层中的应用   总被引:2,自引:1,他引:1  
将双环笼状磷酸酯应用于丙烯酸树脂膨胀阻燃涂层,通过燃烧隔热和烟密度测试及热失重分析研究双环笼状磷酸酯对膨胀阻燃涂层耐火时间、产烟量及热稳定性的影响规律;利用光学显微镜及X-射线光电子能谱对膨胀炭层的微观形貌、元素组成及化学状态进行了研究.结果表明,涂层厚度为0.5mm、耐火时间为11 min时,与聚磷酸铵-季戊四醇-三聚氰胺传统膨胀阻燃涂层相比,改性双环笼状磷酸酯与聚磷酸铵、三聚氰胺复配的膨胀阻燃涂层背温下降了60℃,最大烟密度降低了58%,热稳定性提高了65℃.  相似文献   

2.
为了进一步提高聚丙烯材料的阻燃性能,将一种新型大分子三嗪氰系成炭剂与包裹聚磷酸铵复配,通过熔融共混法制备膨胀阻燃聚丙烯复合材料,并研究了有机改性蒙脱土对此阻燃体系的热稳定性以及阻燃性能的影响。适当加入有机改性蒙脱土有利于提高材料的阻燃性能和热性能。在保持添加剂总质量分数25%不变的情况下,添加2%有机改性蒙脱土时,阻燃聚丙烯材料的极限氧指数上升到31.5,相比未添加样品,材料的阻燃性能有了明显的提高,但过量的有机改性蒙脱土反而会降低材料的阻燃性能。耐水性实验结果表明,此种膨胀阻燃聚丙烯复合材料具有优良的耐水性能。  相似文献   

3.
采用硅烷偶联剂(KH-550)对茶皂素复合型膨胀阻燃剂(CTS-IFR)进行改性处理,并应用于阻燃涂料.考察了硅烷偶联剂改性茶皂素膨胀阻燃剂(SMTS-IFR)的制备工艺,采用FTIR和SEM对改性阻燃剂进行了结构表征,采用同步热分析仪测试了其热解性能,并对含该改性阻燃剂的阻燃涂料(SMTS-IFRC)进行了阻燃性能及燃烧性能分析.结果表明:硅烷偶联剂改性阻燃剂制备的适宜条件为改性温度80℃,反应时间4h,硅烷偶联剂用量2.5%(质量分数);所制改性阻燃剂中硅烷偶联剂与阻燃剂被证实发生了反应,形成了良好包覆,分散均匀,具有良好的热稳定性,且其高温残炭量明显增加;锥形量热试验结果表明,含该改性阻燃剂的阻燃涂料具有良好的耐火性能,且改性阻燃剂涂料试样燃烧过程中的平均热释放速率为62.29kW/m2,总热释放量为52.66kJ/m2,平均有效燃烧热为11.31kJ/kg,平均质量损失速率为0.046 91g/s,较未改性的阻燃剂涂料,其阻燃性能明显提高.  相似文献   

4.
氧化锌在膨胀阻燃体系中的协效作用   总被引:9,自引:1,他引:9  
将膨胀型阻燃剂———聚磷酸铵(APP)和季戊四醇(PER)体系应用于聚丙烯(PP)中使之具有较好的阻燃性.通过氧指数(LOI)、热分析(DTA_TG)和傅立叶红外(FTIR)研究了氧化锌在膨胀型阻燃聚丙烯中的阻燃协效作用.结果表明氧化锌与APP/PER膨胀阻燃体系之间存在显著的协效作用,对酯化及成炭反应具有明显的催化作用,并可提高降解残余物的热稳定性,使材料的阻燃性显著增强而力学性能损失较小.  相似文献   

5.
利用TGA/XPS技术比较研究聚磷酸铵/季戊四醇(APP/PER)-4A与APP/PER体系的热行为.通过热失重及Si/Al原子比和结合能等数据绘图,对图中曲线进行了详细的分析.对比研究表明TGA的第3热失重峰明显降低,XPS的Cls相对谱峰强度随温度明显增加.4A分子筛在低温下对APP/PER膨胀阻燃体系发生催化酯化反应,在高温下Si/Al原子比升高,产生表面层动力学运动.酸的活性增加,有利于APP/PER膨胀阻燃体系.  相似文献   

6.
金属氧化物对阻燃聚丙烯热降解动力学的影响   总被引:17,自引:0,他引:17  
采用聚磷酸铵(APP)和季戊四醇(PER)作为聚丙烯材料的阻燃剂,利用氧指数(LOI),剩炭率(CR),热失重(TG),傅立叶红外(FTIR)等手段研究了添加金属氧化物后的膨胀阻燃材料热降解过程.实验数据显示添加金属氧化物后材料的氧指数提高数个百分点,剩炭率有所增加,热失重(TG)表明加入金属氧化物后,降解残余物的热稳定性得以提高.根据TG曲线,应用Broido方程测得热降解过程表现活化能Ea,金属氧化物的加入使得活化能有所上升。FTIR结果表明金属氧化物对酯化及成炭反应具有明显的催化作用.  相似文献   

7.
采用硬脂酸钠改性后的氢氧化镁与聚丙烯(PP)材料熔融共混,分别以二氧化硅或硼酸锌或聚磷酸铵与季戊四醇的混合物为协效剂,制备氢氧化镁填充量为50%(质量分数)的阻燃聚丙烯。考察了聚丙烯复合材料的燃烧性能、拉伸强度、冲击强度和断面形貌。结果表明:5%(质量分数)的硬脂酸钠改性氢氧化镁填充聚丙烯制备的复合材料拉伸强度、冲击强度和分散性都高于未改性聚丙烯/氢氧化镁复合材料;当协效剂添加量不超过3%时,二氧化硅或硼酸锌对复合材料有协同阻燃和填充增强的作用;聚磷酸铵和季戊四醇的混合物与氢氧化镁有较好的协同阻燃作用,且随着用量的增加,复合材料拉伸强度下降,冲击强度变化不大。  相似文献   

8.
将可膨胀石墨(EG)与聚磷酸铵(APP)复合用于阻燃硬质聚氨酯泡沫(RPUF),采用极限氧指数及锥形量热仪研究了EG/APP对RPUF燃烧性能的影响;通过扫描电镜、热失重分析及X射线光电子能谱表征了RPUF/EG/APP残炭的微观形貌、热降解行为及化学组成. 结果表明,添加质量分数20%、质量比为7:3的EG/APP阻燃RPUF的协同效果最好,氧指数可达36.0%,热释放速率最小,有一定的抑制产烟和CO释放的作用. 在阻燃RPUF燃烧过程中,EG热解残炭虽松散,但燃烧初期抑制烟气效果突出;APP残炭连续致密,但热稳定性不足,且易于生烟;而RPUF/EG/APP残炭隔热效果显著、抑制烟气效果较好. 其作用机理与多磷酸渗入EG残炭,增加了炭层的耐热性及炭层表面N/C、P/C元素摩尔比的增加有关.   相似文献   

9.
增效膨胀型阻燃LDPE的性能研究   总被引:4,自引:0,他引:4  
将分子筛作为膨胀阻燃增效剂,分别引入聚磷酸铵 /季戊四醇和聚磷酸铵 /双季戊四醇两种膨胀型阻燃剂(IFR)中 ,用于制备阻燃LDPE ;研究了分子筛型号及用量对增效作用的影响。结果表明,分子筛显著提高了两种IFR的阻燃效率,使IFR -LDPE的极限氧指数分别达到28.9%和30.9%。其中A型效果优于X型和Y型。TG和DTA分析结果说明,分子筛改变了IFR和IFR-LDPE的热降解过程,提高了高温成炭量和膨胀炭层的热稳定性、热绝缘性,使IFR-LDPE阻燃性提高。  相似文献   

10.
分别采用原位反应增容法和直接添加阻燃剂法制备了膨胀型非卤阻燃聚丙烯,并利用锥形量热仪系统评价了这两种方法制备的膨胀型非卤阻燃聚丙烯的阻燃性能.结果表明:膨胀型非卤阻燃聚丙烯具有优异的阻燃性能,不同制备方法对其阻燃性能有显著的影响;与直接添加法相比,原位反应增容法制备的膨胀型非卤阻燃聚丙烯的点燃时间从23s延长至27s,最大热释放速率从298 kW/m2降至249 kW/m2,平均热释放速率从125.4kW/m2降至86.5 kW/m2,总释放热从148 6 MJ/m2降至124.5 MJ/m2,总生烟量从372 m2/m2降至266 m2/m2,燃烧残重从27.5%增至33.9%,说明原位反应增容法制备的膨胀型非卤阻燃聚丙烯具有更好的阻燃性.  相似文献   

11.
膨胀型阻燃剂阻燃聚丙烯的研究   总被引:1,自引:0,他引:1  
采用聚磷酸铵(APP)和Deflam(敌火龙)分别对聚丙烯(PP)进行了填充改性,研究了两者对PP力学性能、阻燃性能、结晶性能的影响。结果表明:在PP中分别加入APP和De-flam,都可改善PP的阻燃性能,并且后者对PP的阻燃效果更好。在阻燃性能改善的同时,复合体系的弯曲模量和弹性模量明显提高,但抗拉强度和冲击强度降低。APP和Deflam在PP中都具有成核剂作用,可使PP的结晶过程在较高温度下进行,但Deflam对PP的成核效果不如APP.  相似文献   

12.
首先研究了聚磷酸铵/季戊四醇/三聚氰胺/聚丙烯(APP/PER/MEL/PP)膨胀型阻燃体系(IFR)的物料配比对PP阻燃性能和抗拉强度的影响,获得了优化配方.然后将优化配伍的APP/PER/MEL/PP与自制的"三位一体"膨胀型阻燃剂微胶囊化山梨醇磷酸酯三聚氰胺盐(MSDM)阻燃PP(MSDM/PP)进行了比较.结果表明,MSDM对PP的阻燃效果优于APP/PER/MEL,这与MSDM中C、N、P、Cl的协效作用有关.MSDM微胶囊对PP的抗拉强度也有促进作用,这可归因于阻燃剂的微胶囊化增强了MSDM的稳定性以及MSDM与PP的相互作用.  相似文献   

13.
膨胀阻燃PA-66体系热降解研究   总被引:6,自引:0,他引:6  
以聚磷酸铵(APP)为酸源,采用新型无卤,膨胀阻燃体系阻燃PA-66.PA-66是聚合物基质,还可作为炭源并参与气源作用。通过热重分析研究了PA-66膨胀阻燃体系的热降解和阻燃机理,实验表明,APP降低了纯聚合物的稳定性,改变了聚合物PA-66的的热降解过程。  相似文献   

14.
三嗪衍生物的合成及其用于ABS的阻燃研究   总被引:14,自引:0,他引:14  
合成了1种三嗪衍生物-2,4-二氨基-6-羟乙胺基-1,3,5-三嗪,研究了合成反应的影响因素。将合成的这种化合物与聚磷酸铵和季戊四醇复配成ABS的膨胀型阻燃剂,表现出较好的阻燃性。  相似文献   

15.
为了改善传统膨胀阻燃材料耐水性差的问题,将一种新型大分子三嗪系成炭剂(CFA)与包裹聚磷酸铵( MCAPP)复配,通过熔融共混法制备新型无卤膨胀阻燃低密度聚乙烯复合材料(LDPE),并研究成炭剂CFA与MCAPP组成的膨胀阻燃剂对LDPE的阻燃性能、热性能以及耐水性能的影响,探求CFA与MCAPP之间的最佳复配比例.实验结果表明,当CFA与MCAPP的比例为1∶3时,此种新型无卤膨胀阻燃低密度聚乙烯复合材料具有优良的阻燃性能、热稳定性能以及耐水性能.  相似文献   

16.
设计并制备了以聚磷酸铵(APP)为芯材,铝溶胶及γ-氨丙基三乙氧基硅烷为壳层的聚磷酸铵微胶囊(MAPP);将MAPP与三聚氰胺(MEL)和季戊四醇(PER)添加到环氧树脂(E-51)基体中,制备了阻燃环氧树脂EP/MAPP。MAPP表面的Al2O3颗粒可参与陶瓷化反应,提高阻燃性能,并且其表面的氨基可与环氧树脂交联一体化,将MAPP粒子固定在交联体系中,解决APP易水解迁移的问题。测试结果表明:当MAPP的添加量为21份(每100份环氧树脂中MAPP的添加量,质量单位)、MEL和PER的添加量均为7份时,EP/MAPP的阻燃性能可达V-0级别,极限氧指数(LOI)达30.6%,且与EP/APP相比,EP/MAPP的力学性能得到了极大的提升,残炭率与残炭形貌均较优。  相似文献   

17.
将多聚磷酸铵(APP)_季戊四醇(PT)_三聚氰胺(M)体系选作膨胀型阻燃剂,研究了聚丙烯/膨胀型阻燃添加剂(PP/IFR)共混物的熔化及非等温结晶行为.从DSC获得的结果表明,IFR对PP的熔化行为影响很小,但IFR的加入导致PP/IFR共混物的结晶速率比纯PP加快,Avrami指数n和结晶速率常数Zc说明其等温结晶过程为典型的三维生长的异核球状结晶;POM和SEM分析证明,IFR影响PP球晶的尺寸,但不影响其形貌结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号