首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Specificities of heparan sulphate proteoglycans in developmental processes   总被引:34,自引:0,他引:34  
Perrimon N  Bernfield M 《Nature》2000,404(6779):725-728
Heparan sulphate proteoglycans are abundant cell-surface molecules that consist of a protein core to which heparan sulphate glycosaminoglycan chains are attached. The functions of these molecules have remained mostly underappreciated by developmental biologists; however, the actions of important signalling molecules, for example Wnt and Hedgehog, depend on them. To understand both the mechanisms by which ligands involved in development interact with their receptors and how morphogens pattern tissues, biologists need to consider the functions of heparan sulphate proteoglycans in signalling and developmental patterning.  相似文献   

2.
Heparan sulphate proteoglycans fine-tune mammalian physiology   总被引:1,自引:0,他引:1  
Bishop JR  Schuksz M  Esko JD 《Nature》2007,446(7139):1030-1037
Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.  相似文献   

3.
Pellegrini L  Burke DF  von Delft F  Mulloy B  Blundell TL 《Nature》2000,407(6807):1029-1034
Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR) and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity. Although crystal structures of binary complexes of FGF-heparin and FGF-FGFR have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1-FGFR2-heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.  相似文献   

4.
Glycosaminoglycans such as heparan sulphate and chondroitin sulphate are extracellular sugar chains involved in intercellular signalling. Disruptions of genes encoding enzymes that mediate glycosaminoglycan biosynthesis have severe consequences in Drosophila and mice. Mutations in the Drosophila gene sugarless, which encodes a UDP-glucose dehydrogenase, impairs developmental signalling through the Wnt family member Wingless, and signalling by the fibroblast growth factor and Hedgehog pathways. Heparan sulphate is involved in these pathways, but little is known about the involvement of chondroitin. Undersulphated and oversulphated chondroitin sulphate chains have been implicated in other biological processes, however, including adhesion of erythrocytes infected with malaria parasite to human placenta and regulation of neural development. To investigate chondroitin functions, we cloned a chondroitin synthase homologue of Caenorhabditis elegans and depleted expression of its product by RNA-mediated interference and deletion mutagenesis. Here we report that blocking chondroitin synthesis results in cytokinesis defects in early embryogenesis. Reversion of cytokinesis is often observed in chondroitin-depleted embryos, and cell division eventually stops, resulting in early embryonic death. Our findings show that chondroitin is required for embryonic cytokinesis and cell division.  相似文献   

5.
Dependence on pH of polarized sorting of secreted proteins   总被引:7,自引:0,他引:7  
The plasma membranes of epithelial cells are divided into apical and basolateral domains. These two surfaces are characterized by markedly different protein compositions, reflecting the ability of the cell to target newly synthesized membrane proteins to specific regions of the cell surface. This targeting capability is also apparent in the polarized release of secretory products. Recent studies using canine renal tubule (MDCK) cells have suggested that distinct sets of secretory proteins are released from their apical and basolateral poles. We report experiments designed to examine secretory protein sorting by MDCK cells. We have shown that secretion of basement membrane components (laminin and heparan sulphate proteoglycan (HSPG] takes place from the basolateral cell surface and that this polarized release results from active sorting. The sorting process which mediates this polarized secretion requires an acidic intracellular compartment. MDCK cells treated with NH4Cl to raise the pH of their intracellular compartments, secrete laminin and HSPG by a default pathway which leads to their release in roughly equal quantities into the medium of both the apical and basolateral compartments.  相似文献   

6.
Secreted transcription factor controls Mycobacterium tuberculosis virulence   总被引:1,自引:0,他引:1  
Raghavan S  Manzanillo P  Chan K  Dovey C  Cox JS 《Nature》2008,454(7205):717-721
  相似文献   

7.
Wingless (Wg) is a member of the Wnt family of growth factors, secreted proteins that control proliferation and differentiation during development. Studies in Drosophila have shown that responses to Wg require cell-surface heparan sulphate, a glycosaminoglycan component of proteoglycans. These findings suggest that a cell-surface proteoglycan is a component of a Wg/Wnt receptor complex. We demonstrate here that the protein encoded by the division abnormally delayed (dally) gene is a cell-surface, heparan-sulphate-modified proteoglycan. dally partial loss-of-function mutations compromise Wg-directed events, and disruption of dally function with RNA interference produces phenotypes comparable to those found with RNA interference of wg or frizzled (fz)/Dfz2. Ectopic expression of Dally potentiates Wg signalling without altering levels of Wg and can rescue a wg partial loss-of-function mutant. We also show that dally, a regulator of Decapentaplegic (Dpp) signalling during post-embryonic development, has tissue-specific effects on Wg and Dpp signalling. Dally can therefore differentially influence signalling mediated by two growth factors, and may form a regulatory component of both Wg and Dpp receptor complexes.  相似文献   

8.
X Lin  N Perrimon 《Nature》1999,400(6741):281-284
The Drosophila wingless gene (wg) encodes a protein of the Wnt family and is a critical regulator in many developmental processes. Biochemical studies have indicated that heparan sulphate proteoglycans, consisting of a protein core to which heparan sulphate glycosaminoglycans are attached, are important for Wg function. Here we show that, consistent with these findings, the Drosophila gene sulfateless (sfl), which encodes a homologue of vertebrate heparan sulphate N-deacetylase/N-sulphotransferase (an enzyme needed for the modification of heparan sulphate) is essential for Wg signalling. We have identified the product of division abnormally delayed (dally), a glycosyl-phosphatidyl inositol (GPI)-linked glypican, as a heparan sulphate proteoglycan molecule involved in Wg signalling. Our results indicate that Dally may act as a co-receptor for Wg, and that Dally, together with Drosophila Frizzled 2, modulates both short- and long-range activities of Wg.  相似文献   

9.
Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.  相似文献   

10.
A given B lymphocyte makes an antibody containing either kappa- or lambda-light chains, but not both. This isotype exclusion is effected at the level of the rearrangement of the immunoglobulin gene segments, although by an unknown mechanism. An attractive possibility is that, following productive rearrangement of one of the light-chain loci, the newly synthesized light-chain polypeptide inhibits DNA rearrangement for the other isotype. To test such feedback regulation, we have created transgenic mice carrying a rearranged lambda 1-gene. By contrast with the B cells in normal newborn mice which are mainly kappa+lambda-, the B cells in the newborn transgenic mice express lambda- but not kappa-chains. We propose that the synthesis of any light chain, be it kappa or lambda, that allows expression of IgM on the cell surface results in a cessation of all V-J joining. Interestingly, the limited light-chain repertoire of the transgenic mice does not persist and most adult B cells express endogenous kappa-rearrangements and down-regulate the transgene.  相似文献   

11.
Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO(3)(-) transport. Without CFTR, airway epithelial HCO(3)(-) secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.  相似文献   

12.
The binding of a T-cell antigen receptor (TCR) to peptide antigen presented by major histocompatibility antigens (pMHC) on antigen-presenting cells (APCs) is a central event in adaptive immune responses. The mechanism by which TCR-pMHC ligation initiates signalling, a process termed TCR triggering, remains controversial. It has been proposed that TCR triggering is promoted by segregation at the T cell-APC interface of cell-surface molecules with small ectodomains (such as TCR-pMHC and accessory receptors) from molecules with large ectodomains (such as the receptor protein tyrosine phosphatases CD45 and CD148). Here we show that increasing the dimensions of the TCR-pMHC interaction by elongating the pMHC ectodomain greatly reduces TCR triggering without affecting TCR-pMHC ligation. A similar dependence on receptor-ligand complex dimensions was observed with artificial TCR-ligand systems that span the same dimensions as the TCR-pMHC complex. Interfaces between T cells and APCs expressing elongated pMHC showed an increased intermembrane separation distance and less depletion of CD45. These results show the importance of the small size of the TCR-pMHC complex and support a role for size-based segregation of cell-surface molecules in TCR triggering.  相似文献   

13.
Cox JS  Chen B  McNeil M  Jacobs WR 《Nature》1999,402(6757):79-83
Tuberculosis is the leading cause of death in the world resulting from a single bacterial infection. Despite its enormous burden on world health, little is known about the molecular mechanisms of pathogenesis of Mycobacterium tuberculosis. Bacterial multiplication and concomitant tissue damage within an infected host, including experimentally infected mice, occurs primarily in the lungs-the favoured niche of M. tuberculosis. Although it has been proposed that the distinctive cell wall of M. tuberculosis is important for virulence, rigorous genetic proof has been lacking. Here, using signature-tagged mutagenesis, we isolated three attenuated M. tuberculosis mutants that cannot synthesize or transport a complex, cell wall-associated lipid called phthiocerol dimycocerosate (PDIM) which is found only in pathogenic mycobacteria. Two mutants have transposon insertions affecting genes implicated in PDIM synthesis; the third has a disruption in a gene encoding a large transmembrane protein required for proper subcellular localization of PDIM. Synthesis and transport of this complex lipid is only required for growth in the lung; all three mutants are unaffected for growth in the liver and spleen. This clearly shows that a lipid is required for M. tuberculosis virulence.  相似文献   

14.
Hwang HY  Olson SK  Esko JD  Horvitz HR 《Nature》2003,423(6938):439-443
Defects in glycosaminoglycan biosynthesis disrupt animal development and can cause human disease. So far much of the focus on glycosaminoglycans has been on heparan sulphate. Mutations in eight squashed vulva (sqv) genes in Caenorhabditis elegans cause defects in cytokinesis during embryogenesis and in vulval morphogenesis during postembryonic development. Seven of the eight sqv genes have been shown to control the biosynthesis of the glycosaminoglycans chondroitin and heparan sulphate. Here we present the molecular identification and characterization of the eighth gene, sqv-5. This gene encodes a bifunctional glycosyltransferase that is probably localized to the Golgi apparatus and is responsible for the biosynthesis of chondroitin but not heparan sulphate. Our findings show that chondroitin is crucial for both cytokinesis and morphogenesis during C. elegans development.  相似文献   

15.
For a wide variety of microbial pathogens, the outcome of the infection is indeterminate. In some individuals the microbe is cleared, but in others it establishes a chronic infection, and the factors that tip this balance are often unknown. In a widely used model of chronic viral infection, C57BL/6 mice clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV), but the clone 13 strain persists. Here we show that the Armstrong strain induces a profound lymphopenia at days 1-3 after infection, but the clone 13 strain does not. If we transiently augment lymphopenia by treating the clone-13-infected mice with the drug FTY720 at days 0-2 after infection, the mice successfully clear the infection by day 30. Clearance does not occur when CD4 T cells are absent at the time of treatment, indicating that the drug is not exerting direct antiviral effects. Notably, FTY720 treatment of an already established persistent infection also leads to viral clearance. In both models, FTY720 treatment preserves or augments LCMV-specific CD4 and CD8 T-cell responses, a result that is counter-intuitive because FTY720 is generally regarded as a new immunosuppressive agent. Because FTY720 targets host pathways that are completely evolutionarily conserved, our results may be translatable into new immunotherapies for the treatment of chronic microbial infections in humans.  相似文献   

16.
乙酰肝素酶(HPSE)与肿瘤生长、转移关系的研究进展   总被引:2,自引:0,他引:2  
目的:通过文献学习,了解乙酰肝素酶与肿瘤的生长和转移的关系。结论:1.乙酰肝素酶的表达(heparananse HPSE)通过降解硫酸乙酰肝素细胞(heparansulfate,HS)和降解硫酸乙酰肝素蛋白聚糖(heparansulfate proteoglycan,HSPG),破坏、改变细胞外基质(extracellular matrix,ECM)和基底膜(basement membranes,BM)结构,促进肿瘤细胞侵袭、转移。2.诱导血管的生成直接作用于内皮细胞以生芽方式促进血管生成,通过释放肿瘤微环境和ECM中储存的高活性的HS-bFGF复合物来诱发直接的血管反应,促进肿瘤的生长。乙酰肝素酶的表达是判断多种肿瘤预后的标记物之一。  相似文献   

17.
Listeria monocytogenes is an intracellular bacterial pathogen that replicates rapidly in the cytosol of host cells during acute infection. Surprisingly, these bacteria were found to occupy vacuoles in liver granuloma macrophages during persistent infection of severe combined immunodeficient (SCID) mice. Here we show that L. monocytogenes can replicate in vacuoles within macrophages. In livers of SCID mice infected for 21 days, we observed bacteria in large LAMP1(+) compartments that we termed spacious Listeria-containing phagosomes (SLAPs). SLAPs were also observed in vitro, and were found to be non-acidic and non-degradative compartments that are generated in an autophagy-dependent manner. The replication rate of bacteria in SLAPs was found to be reduced compared to the rate of those in the cytosol. Listeriolysin O (LLO, encoded by hly), a pore-forming toxin essential for L. monocytogenes virulence, was necessary and sufficient for SLAP formation. A L. monocytogenes mutant with low LLO expression was impaired for phagosome escape but replicated slowly in SLAPs over a 72 h period. Therefore, our studies reveal a role for LLO in promoting L. monocytogenes replication in vacuoles and suggest a mechanism by which this pathogen can establish persistent infection in host macrophages.  相似文献   

18.
Human aminopeptidase N is a receptor for human coronavirus 229E.   总被引:62,自引:0,他引:62  
Human coronaviruses (HCV) in two serogroups represented by HCV-229E and HCV-OC43 are an important cause of upper respiratory tract infections. Here we report that human aminopeptidase N, a cell-surface metalloprotease on intestinal, lung and kidney epithelial cells, is a receptor for human coronavirus strain HCV-229E, but not for HCV-OC43. A monoclonal antibody, RBS, blocked HCV-229E virus infection of human lung fibroblasts, immunoprecipitated aminopeptidase N and inhibited its enzymatic activity. HCV-229E-resistant murine fibroblasts became susceptible after transfection with complementary DNA encoding human aminopeptidase N. By contrast, infection of human cells with HCV-OC43 was not inhibited by antibody RBS and expression of aminopeptidase N did not enhance HCV-OC43 replication in mouse cells. A mutant aminopeptidase lacking the catalytic site of the enzyme did not bind HCV-229E or RBS and did not render murine cells susceptible to HCV-229E infection, suggesting that the virus-binding site may lie at or near the active site of the human aminopeptidase molecule.  相似文献   

19.
Hattori D  Demir E  Kim HW  Viragh E  Zipursky SL  Dickson BJ 《Nature》2007,449(7159):223-227
Neurons are thought to use diverse families of cell-surface molecules for cell recognition during circuit assembly. In Drosophila, alternative splicing of the Down syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 closely related transmembrane proteins of the immunoglobulin superfamily, each comprising one of 19,008 alternative ectodomains linked to one of two alternative transmembrane segments. These ectodomains show isoform-specific homophilic binding, leading to speculation that Dscam proteins mediate cell recognition. Genetic studies have established that Dscam is required for neural circuit assembly, but the extent to which isoform diversity contributes to this process is not known. Here we provide conclusive evidence that Dscam diversity is essential for circuit assembly. Using homologous recombination, we reduced the entire repertoire of Dscam ectodomains to just a single isoform. Neural circuits in these mutants are severely disorganized. Furthermore, we show that it is crucial for neighbouring neurons to express distinct isoforms, but that the specific identity of the isoforms expressed in an individual neuron is unimportant. We conclude that Dscam diversity provides each neuron with a unique identity by which it can distinguish its own processes from those of other neurons, and that this self-recognition is essential for wiring the Drosophila brain.  相似文献   

20.
Stebbins CE  Galán JE 《Nature》2001,412(6848):701-705
An important mechanism underlying the strategies used by microbial pathogens to manipulate cellular functions is that of functional mimicry of host activities. In some cases, mimicry is achieved through virulence factors that are direct homologues of host proteins. In others, convergent evolution has produced new effectors that, although having no obvious amino-acid sequence similarity to host factors, are revealed by structural studies to display mimicry at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号